A new family of chloroborate compounds, which was investigated from the viewpoint of rare earth ion activated phosphor materials, have been synthesized by a conventional high temperature solid-state reaction. The crystal structure and thermally stable luminescence of chloroborate phosphors Ba(2)Ln(BO(3))(2)Cl:Eu(2+) (Ln = Y, Gd, and Lu) have been reported in this paper. X-ray diffraction studies verify the successful isomorphic substitution for Ln(3+) sites in Ba(2)Ln(BO(3))(2)Cl by other smaller trivalent rare earth ions, such as Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb. The detailed structure information for Ba(2)Ln(BO(3))(2)Cl (Ln = Y, Gd, and Lu) by Rietveld analysis reveals that they all crystallize in a monoclinic P2(1)/m space group. These compounds display interesting and tunable photoluminescence (PL) properties after Eu(2+)-doping. Ba(2)Ln(BO(3))(2)Cl:Eu(2+) phosphors exhibit bluish-green/greenish-yellow light with peak wavelengths at 526, 548, and 511 nm under 365 UV light excitation for Ba(2)Y(BO(3))(2)Cl:Eu(2+), Ba(2)Gd(BO(3))(2)Cl:Eu(2+), and Ba(2)Lu(BO(3))(2)Cl:Eu(2+), respectively. Furthermore, they possess a high thermal quenching temperature. With the increase of temperature, the emission bands show blue shifts with broadening bandwidths and slightly decreasing emission intensities. It is expected that this series of chloroborate phosphors can be used in white-light UV-LEDs as a good wavelength-conversion phosphor.
Today, there is an urgent demand to develop all solid‐state lithium‐ion batteries (LIBs) with a high energy density and a high degree of safety. The core technology in solid‐state batteries is a solid‐state electrolyte, which determines the performance of the battery. Among all the developed solid electrolytes, composite polymer electrolytes (CPEs) have been deemed as one of the most viable candidates because of their comprehensive performance. In this review, the limitations of traditional solid polymer electrolytes and the recent progress of CPEs are introduced. The effect and mechanism of inorganic fillers to the various properties of electrolytes are discussed in detail. Meanwhile, the factors affecting ionic conductivity are intensively reviewed. The recent representative CPEs with synthetic fillers and natural clay‐based fillers are highlighted because of their great potential. Finally, the remaining challenges and promising prospects are outlined to provide strategies to develop novel CPEs for high‐performance LIBs.
A novel red-emitting Ba(2)Tb(BO(3))(2)Cl:Eu phosphor possessing a broad excitation band in the near-ultraviolet (n-UV) region was synthesized by the solid-state reaction. Versatile Ba(2)Tb(BO(3))(2)Cl compound has a rigid open framework, which can offer two types of sites for various valence's cations to occupy, and the coexistence of Eu(2+)/Eu(3+) and the red-emitting luminescence from Eu(3+) with the aid of efficient energy transfer of Eu(2+)-Eu(3+)(Tb(3+)) and Tb(3+)-Eu(3+) have been investigated. Ba(2)Tb(BO(3))(2)Cl emits green emission with the main peak around 543 nm, which originates from (5)D(4) → (7)F(5) transition of Tb(3+). Ba(2)Tb(BO(3))(2)Cl:Eu shows bright red emission from Eu(3+) with peaks around 594, 612, and 624 nm under n-UV excitation (350-420 nm). The existence of Eu(2+) can be testified by the broad-band excitation spectrum, UV-vis reflectance spectrum, X-ray photoelectron spectrum, and Eu L(3)-edge X-ray absorption spectrum. Decay time and time-resolved luminescence measurements indicated that the interesting luminescence behavior should be ascribed to efficient energy transfer of Eu(2+)-Eu(3+)(Tb(3+)) and Tb(3+)-Eu(3+) in Ba(2)Tb(BO(3))(2)Cl:Eu phosphors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.