Piezocatalysis, a newly emerging catalysis technology that relies on the piezopotential and piezoelectric properties of the catalysts, is attracting unprecedented research enthusiasm for applications in energy conversion, organic synthesis, and environmental remediation. Despite the rapid development in the past three years, the mechanism of piezocatalysis is still under debate. A fundamental understanding of the working principles of this technology should enable the future design and optimization of piezocatalysts. Herein, we provide an overview of the two popular theories used to explain the observed piezocatalysis: energy band theory and screening charge effect. A comprehensive discussion and clarification of the differences, relevance, evidence, and contradiction of the two mechanisms are provided. Finally, challenges and perspectives for future mechanistic studies are highlighted. Hopefully, this Review can help readers gain a better understanding of piezocatalysis and enable its application in their own research.
Selective oxidation of benzyl alcohol (BzOH) into benzaldehyde (BzH) is very important in synthetic chemistry. Peroxymonosulfate (PMS) is a cheap, stable, and soluble solid oxidant, holding promise for organic oxidation reactions. Herein, we report the catalytic PMS activation via carbon nanotubes (CNTs) for the selective oxidation of BzOH under mild conditions without other additives. A remarkable promotion of BzH yield with a selectivity over 80% was achieved on modified CNTs, i.e., O-CNTs via the radical oxidation process, and the oxygen functionalities for catalysis were comprehensively investigated by experimental study and theoretical exploration. To understand the different surface oxygen species on CNTs for the activation of PMS, density functional theory (DFT) calculations were performed to investigate the adsorption behavior of PMS on various CNTs. The electrophilic oxygen was identified as the electron captor to activate PMS by O−O bond cleavage to form SO 5•− and SO 4 •− radicals. The nucleophilic carbonyl groups can also induce a redox cycle to generate • OH and SO 4•− radicals, but phenolic hydroxyl groups impede the radical process with antioxidative functionality. The carbocatalysis-assisted PMS activation may provide a cheap process for the selective oxidation of alcohols into aldehydes or ketones. The insight achieved from this fundamental study may be further applied to other organic syntheses via selective oxidation.
The development of highly efficient strategy for the activation C-H bond in hydrocarbons for organic synthesis is one of the most challenging tasks facing the chemical industries. Novel catalyst with...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.