Janus crystals represent an exciting class of 2D materials with different atomic species on their upper and lower facets. Theories have predicted that this symmetry breaking induces an electric field and leads to a wealth of novel properties, such as large Rashba spin–orbit coupling and formation of strongly correlated electronic states. Monolayer MoSSe Janus crystals have been synthesized by two methods, via controlled sulfurization of monolayer MoSe2 and via plasma stripping followed thermal annealing of MoS2. However, the high processing temperatures prevent growth of other Janus materials and their heterostructures. Here, a room‐temperature technique for the synthesis of a variety of Janus monolayers with high structural and optical quality is reported. This process involves low‐energy reactive radical precursors, which enables selective removal and replacement of the uppermost chalcogen layer, thus transforming classical transition metal dichalcogenides into a Janus structure. The resulting materials show clear mixed character for their excitonic transitions, and more importantly, the presented room‐temperature method enables the demonstration of first vertical and lateral heterojunctions of 2D Janus TMDs. The results present significant and pioneering advances in the synthesis of new classes of 2D materials, and pave the way for the creation of heterostructures from 2D Janus layers.
The platinum single‐atom‐catalyst is verified as a very successful route to approach the size limit of Pt catalysts, while how to further improve the catalytic efficiency of Pt is a fundamental scientific question and is challenging because the size issue of Pt is approached at the ultimate ceiling as single atoms. Here, a new route for further improving Pt catalytic efficiency by cobalt (Co) and Pt dual‐single‐atoms on titanium dioxide (TiO2) surfaces, which contains a fraction of nonbonding oxygen‐coordinated Co–O–Pt dimers, is reported. These Co–Pt dimer sites originate from loading high‐density Pt single‐atoms and Co single‐atoms, with them anchoring randomly on the TiO2 substrate. This dual‐single‐atom catalyst yields 13.4% dimer sites and exhibits an ultrahigh and stable photocatalytic activity with a rate of 43.467 mmol g−1 h−1 and external quantum efficiency of ≈83.4% at 365 nm. This activity far exceeds those of equal amounts of Pt single‐atom and typical Pt clustered catalysts by 1.92 and 1.64 times, respectively. The enhancement mechanism relies on the oxygen‐coordinated Co–O–Pt dimer coupling, which can mutually optimize the electronic states of both Pt and Co sites to weaken H* binding. Namely, the “mute” Co single‐atom is activated by Pt single‐atom and the activity of the Pt atom is further enhanced through the dimer interaction. This strategy of nonbonding interactive dimer sites and the oxygen‐mediated catalytic mechanisms provide emerging rich opportunities for greatly improving the catalytic efficiency and developing novel catalysts with creating new electronic states.
Named after the two‐faced Roman god of transitions, transition metal dichalcogenide (TMD) Janus monolayers have two different chalcogen surfaces, inherently breaking the out‐of‐plane mirror symmetry. The broken mirror symmetry and the resulting potential gradient lead to the emergence of quantum properties such as the Rashba effect and the formation of dipolar excitons. Experimental access to these quantum properties, however, hinges on the ability to produce high‐quality 2D Janus monolayers. Here, these results introduce a holistic 2D Janus synthesis technique that allows real‐time monitoring of the growth process. This prototype chamber integrates in situ spectroscopy, offering fundamental insights into the structural evolution and growth kinetics, that allow the evaluation and optimization of the quality of Janus monolayers. The versatility of this method is demonstrated by synthesizing and monitoring the conversion of SWSe, SNbSe, and SMoSe Janus monolayers. Deterministic conversion and real‐time data collection further aid in conversion of exfoliated TMDs to Janus monolayers and unparalleled exciton linewidth values are reached, compared to the current best standard. The results offer an insight into the process kinetics and aid in the development of new Janus monolayers with high optical quality, which is much needed to access their exotic properties.
Electrochemical CO 2 reduction reaction can be used to produce value-added hydrocarbon fuels and chemicals by coupling with clean electrical energy. However, highly active, selective, and energy-efficient CO 2 conversion to multicarbon hydrocarbons, such as C 2 H 4 , remains challenging because of the lack of efficient catalysts. Herein, an ultrasonication-assisted electrodeposition strategy to synthesize CuO nanosheets for low-overpotential CO 2 electroreduction to C 2 H 4 is reported. A high C 2 H 4 Faradaic efficiency of 62.5% is achieved over the CuO nanosheets at a small potential of −0.52 V versus a reversible hydrogen electrode, corresponding to a record high half-cell cathodic energy efficiency of 41%. The selectivity toward C 2 H 4 is maintained for over 60 h of continuous operation. The CuO nanosheets are prone to in situ restructuring during CO 2 reduction, forming abundant grain boundaries (GBs). Stable Cu + /Cu 0 interfaces are derived from the low-coordinated Cu atoms in the reconstructed GB regions and act as highly active sites for CO 2 reduction at low overpotentials. In situ Raman spectroscopic analysis and density functional theory computation reveal that the Cu + /Cu 0 interfaces offer high *CO surface coverage and lower the activation energy barrier for *CO dimerization, which, in synergy, facilitates CO 2 reduction to C 2 H 4 at low overpotentials.
The development of highly efficient strategy for the activation C-H bond in hydrocarbons for organic synthesis is one of the most challenging tasks facing the chemical industries. Novel catalyst with...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.