Miscible and near-miscible flooding are used to improve the performance of carbon-dioxide-enhanced oil recovery in heterogeneous porous media. However, knowledge of the effects of heterogeneous pore structure on CO2/oil flow behavior under these two flooding conditions is insufficient. In this study, we construct pore-scale CO2/oil flooding models for various flooding methods and comparatively analyze CO2/oil flow behavior and oil recovery efficiency in heterogeneous porous media. The simulation results indicate that compared to immiscible flooding, near-miscible flooding can increase the CO2 sweep area to some extent, but it is still inefficient to displace oil in small pore throats. For miscible flooding, although CO2 still preferentially displaces oil through big throats, it may subsequently invade small pore throats. In order to substantially increase oil recovery efficiency, miscible flooding is the priority choice; however, the increase of CO2 diffusivity has little effect on oil recovery enhancement. For immiscible and near-miscible flooding, CO2 injection velocity needs to be optimized. High CO2 injection velocity can speed up the oil recovery process while maintaining equivalent oil recovery efficiency for immiscible flooding, and low CO2 injection velocity may be beneficial to further enhancing oil recovery efficiency under near-miscible conditions.
CO 2 sequestration in saline aquifers is widely recognized as one of the few measures that can achieve a large-scale reduction in CO 2 emissions, and an increasing number of demo projects have been placed into effect or planned all over the world (
As an important working condition in water conveyance projects, the water filling process of pipelines is a complex hydraulic transition process involving water–air two-phase flow with sharp pressure changes that can easily cause pipeline damage. In light of the complex water–air two-phase flow during pipeline water filling, this study explores the water filling process of right-angle elbow pressure pipelines using CFD numerical simulations and physical model experiments, analyzing changes in water phase volume fraction, water-gas two-phase flow patterns, and hydraulic parameters in the pipeline under low flow rate conditions of 0.6 m/s and high flow rate conditions of 1.5 m/s. Results show that under low flow rate conditions, there is more local trapped gas at the top of the pipeline, causing negative pressure at local high points in the pipeline and forming a vacuum. Under high velocity conditions, water-gas two-phase flow changes more frequently in the pipeline, with a large number of bubbles collapsing at the top, resulting in large fluctuations in pipeline pressure. Finally, through physical experiments, the main flow patterns during water filling in right-angle elbows are verified and analyzed. These results have certain reference significance for formulating safe and efficient water filling velocity schemes for pressurized pipelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.