Cell-based ELISA (CELLISA) has been widely used in disease diagnosis due to its simplicity and low cost. Recently, peroxidase-like nanomaterials have emerged as promising systems for CELLISA applications. In this work, tobacco mosaic virus (TMV) was simultaneously tailored with peroxidase-like inorganic nanoparticles (platinum nanoparticles) and cancer cell target groups (folic acid, FA) to obtain TMV-FA-Pt nanoparticles for cancer cell detection. Induced by the uniformly distributed reactive groups and well-defined structure of the TMV particle, platinum nanoparticles could be grown in situ on the exterior surface of TMV with excellent monodispersity and uniform spatial distribution. Meanwhile, FA with a PEG linker was successfully conjugated to the coat proteins of TMV through the Cu(I)-catalyzed alkyne-azide cycloaddition reaction, an efficient "click" chemistry. Our study demonstrated that the resultant TMV-FA-Pt had specific affinity to cancer cells and was successfully used to detect cancer cells through CELLISA. Less than 1.0 × 10 cells/mL of cancer cells could be readily detected.
We developed a facile method to fabricate platinum (Pt) porous nanotubes coated with interconnected Pt dendrites using the tobacco mosaic virus (TMV) as a template. The surfaceexposed arginine residues of the TMV induced the selective deposition of Pt seeds on the TMV outside surface, and poly(sodium-p-styrenesulfonate) (PSS) was chosen to stabilize the dispersity of TMV coated with Pt seeds (TMV/SPt). The limited space between the Pt seeds and their uniform distribution on the TMV exterior confined the growth of Pt dendrites, resulting in continuous dendritic platinum nanotubes (TMV/DPtNT). The synergistic effects of porous dendrites and anisotropic structures of the TMV/DPtNTs provided an increase in the active sites, the enhancement of transport efficiency and long-distance electron transfer, which greatly improved the catalytic activity. We also demonstrated that such nanotubes could be used in the detection of H 2 O 2 with good sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.