Simple Summary: Silver sillago (Sillago sihama) is a marine fish species with a high economic value. S. sihama is poorly resistant to hypoxia. However, hypoxia stress-related genes and pathways in S. sihama remain unclear. In this study, we compared gill tissues of S. sihama between hypoxia and normoxia groups and detected differentially expressed genes under hypoxia stress. Two gene families, such as cytochrome P450 and glutathione S-transferase were associated with the function of metabolic process under the hypoxia stress. This study will expand our knowledge about the molecular mechanism of the transcriptome response to hypoxia stress in S. sihama.Abstract: Silver sillago (Sillago sihama) is a commercially important marine fish species in East Asia. In this study, we compared the transcriptome response to hypoxia stress in the gill tissue of S. sihama. The fish were divided into four groups, such as 1 h of hypoxia (hypoxia1h, DO = 1.5 ± 0.1 mg/L), 4 h of hypoxia (hypoxia4h, DO = 1.5 ± 0.1 mg/L), 4 h of reoxygen (reoxygen4h, DO = 8.0 ± 0.2 mg/L) after 4 h of hypoxia (DO = 1.5 mg/L), and normoxia or control (DO = 8.0 ± 0.2 mg/L) groups. Compared to the normoxia group, a total of 3550 genes were identified as differentially expressed genes (DEGs) (log 2 foldchange > 1 and padj < 0.05), including 1103, 1451 and 996 genes in hypoxia1h, hypoxia4h and reoxygen4h groups, respectively. Only 247 DEGs were differentially co-expressed in all treatment groups. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, DEGs were significantly enriched in steroid biosynthesis, biosynthesis of amino acids, glutathione metabolism and metabolism of xenobiotics by cytochrome P450, ferroptosis and drug metabolism-cytochrome P450 pathways. Of these, the cytochrome P450 (CYP) and glutathione S-transferase (GST) gene families were widely expressed. Our study represents the insights into the underlying molecular mechanisms of hypoxia stress.Animals 2020, 10, 628 2 of 13 the aquatic environment, which can be accelerated by several factors, such as human activities, water pollution, and intensive fish farming [1]. To adapt to the hypoxic environment, fish produce a range of adaptive physiological mechanisms, such as a rapid change in cell metabolism using ATP [2], regulation of respiratory function [3], floating head [4], and neurological, immune, and hormonal responses [5]. Severe hypoxia can even affect fish reproduction, survival, and cell metabolism [6]. The fish gill is the primary organ for physiological exchanges with the surrounding environment [7]. The fish gill plays a dominant role in aquatic gas exchange and is capable of extensive remodeling in response to changes in the DO level [8]. Many fish respond to hypoxia by increasing the functional surface area of their gill [4]. When the fish returns to normoxic water, the hypoxia-induced gill remodeling is reversed due to the embedding of gill lamellae [9].The sillago silver (Sillago sihama) is a popular species of the family Sillaginidae [10]. S. sihama is ...
Single-photon sources play a key role in photonic quantum technologies. Semiconductor quantum dots can emit indistinguishable single photons under resonant excitation. However, the resonance fluorescence technique typically requires cross-polarization filtering, which causes a loss of the unpolarized quantum dot emission by 50%. To solve this problem, we demonstrate a method for generating indistinguishable single photons with optically controlled polarization by two laser pulses off-resonant with neutral exciton states. This scheme is realized by exciting the quantum dot to the biexciton state and subsequently driving the quantum dot to an exciton eigenstate. By combining with a magnetic field, we demonstrated the generation of photons with optically controlled polarization (the degree of polarization is 101(2)%), laser-neutral exciton detuning up to 0.81 meV, high single-photon purity (99.6(1)%), and indistinguishability (85(4)%). Laser pulses can be blocked using polarization and spectral filtering. Our work makes an important step toward indistinguishable single-photon sources with near-unity collection efficiency.
Nanophotonics, driven by low processing power and high density integration, is appearing as the next logical step for microwave photonics. Optical frequency combs (OFCs), which play a vital role in integrated microwave photonics, have not yet generated using nano-structured devices. In this paper, we propose OFC generation based on all-optical modulation of nanophotonic structures. A theoretical model based on temporal coupled mode theory is developed to describe cascaded alloptical photonic crystal intensity and phase modulators. Using a modulation light with a sinusoidal waveform, a separate carrier light is modulated to generate an OFC. By manipulating the modulation power and device dimensions, a flat OFC that spans over a 600GHz is delivered. The proposed system offers OFC generation with tunable comb line spacing using devices with high density integration capabilities.
Photonic crystal lasers with a high-Q factor and small mode volume are ideal light sources for on-chip nano-photonic integration. Due to the submicron size of their active region, it is usually difficult to achieve high output power and single-mode lasing at the same time. In this work, we demonstrate well-selected single-mode lasing in a line-defect photonic crystal cavity by coupling it to the high-Q modes of a short double-heterostructure photonic crystal cavity. One of the FP-like modes of the line-defect cavity can be selected to lase by thermo-optically tuning the high-Q mode of the short cavity into resonance. Six FP-like modes are successively tuned into lasing with side mode suppression ratios all exceeding 15 dB. Furthermore, we show a continuous wavelength tunability of about 10 nm from all the selected modes. The coupled cavity system provides a remarkable platform to explore the rich laser physics through the spatial modulation of vacuum electromagnetic field at submicron scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.