Social network analysis has important research significance in sociology, business analysis, public security, and other fields. The traditional Louvain algorithm is a fast community detection algorithm with reliable results. The scale of complex networks is expanding larger all the time, and the efficiency of the Louvain algorithm will become lower. To improve the detection efficiency of large-scale networks, an improved Fast Louvain algorithm is proposed. The algorithm optimizes the iterative logic from the cyclic iteration to dynamic iteration, which speeds up the convergence speed and splits the local tree structure in the network. The split network is divided iteratively, then the tree structure is added to the partition results, and the results are optimized to reduce the computation. It has higher community aggregation, and the effect of community detection is improved. Through the experimental test of several groups of data, the Fast Louvain algorithm is superior to the traditional Louvain algorithm in partition effect and operation efficiency.
The volatility of wind power generations could significantly challenge the economic and secure operation of combined electricity and heat networks. To tackle this challenge, this paper proposes a framework of optimal dispatch with distributed electric heating storage based on a correlation-based long short-term memory prediction model. The prediction model of distributed electric heating storage is developed to model its behavior characteristics which are obtained by the autocorrelation and correlation analysis with external factors including weather and time-of-use price. An optimal dispatch model of combined electricity and heat networks is then formulated and resolved by a constraint reduction technique with clustering and classification. Our method is verified through numerous simulations. The results show that, compared with the state-of-the-art techniques of support vector machine and recurrent neural networks, the mean absolute percentage error with the proposed correlation-based long short-term memory can be reduced by 1.009 and 0.481 respectively. Compared with conventional method, the peak wind power curtailment with dispatching distributed electric heating storage is reduced by nearly 30% and 50% in two cases respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.