Abstract:In data-sparse areas, due to the lack of hydrogeological data, numerical groundwater models have some uncertainties. In this paper, a nested model and a multi-index calibration method are used to improve the reliability of a numerical groundwater model in a data-sparse region, the Nalinggele River catchment in the Qaidam Basin. Referencing this key study area, a regional three-dimensional groundwater flow model is developed in a relatively complete hydrogeological unit. A complex set of calibration indices, including groundwater fitting errors, dynamic groundwater trends, spring discharges, overflow zone location, and groundwater budget status, are proposed to calibrate the regional numerical groundwater model in the Nalinggele alluvial-proluvial fan. Constrained by regional groundwater modeling results, a local-scale groundwater model is developed, and the hydrogeological parameters are investigated to improve modeling accuracy and reliability in this data-sparse region.
Abstract. Many thousands of large dam reservoirs have been constructed worldwide during the last seventy years to increase reliable water supplies and support economic growth. Because reservoir storage measurements are generally not publicly available, so far there has been no global assessment of long-term dynamic changes in reservoir water volume. We overcame this by using optical (Landsat) and altimetry remote sensing to reconstruct monthly water storage for 6,743 reservoirs worldwide between 1984 and 2015. We relate reservoir storage to resilience and vulnerability and analyse their response to precipitation, streamflow and evaporation. We find reservoir storage has diminished substantially for 23 % of reservoirs over the three decades but increased for 21 %. The greatest declines were for dry basins in southeastern Australia (−29 %), the USA (−10 %), and eastern Brazil (−9 %). The greatest gains occurred in the Nile Basin (+67 %), Mediterranean basins (+31 %) and southern Africa (+22 %). Many of the observed reservoir changes were explained well by changes in precipitation and river inflows, emphasising the importance of multi-decadal precipitation changes for reservoir water storage, rather than changes in net evaporation or (demand-driven) dam water releases.
Abstract. River discharge measurements have proven invaluable to monitor the global water cycle, assess flood risk, and guide water resource management. However, there is a delay, and ongoing decline, in the availability of gauging data and stations are highly unevenly distributed globally. While not a substitute for river discharge measurement, remote sensing is a cost-effective technology to acquire information on river dynamics in situations where ground-based measurements are unavailable. The general approach has been to relate satellite observation to discharge measured in situ, which prevents its use for ungauged rivers. Alternatively, hydrological models are now available that can be used to estimate river discharge globally. While subject to greater errors and biases than measurements, model estimates of river discharge do expand the options for applying satellite-based discharge monitoring in ungauged rivers. Our aim was to test whether satellite gauging reaches (SGRs), similar to virtual stations in satellite altimetry, can be constructed based on Moderate Resolution Imaging Spectroradiometer (MODIS) optical or Global Flood Detection System (GFDS) passive microwave-derived surface water extent fraction and simulated discharge from the World-Wide Water (W3) model version 2. We designed and tested two methods to develop SGRs across the Amazon Basin and found that the optimal grid cell selection method performed best for relating MODIS and GFDS water extent to simulated discharge. The number of potential river reaches to develop SGRs increases from upstream to downstream reaches as rivers widen. MODIS SGRs are feasible for more river reaches than GFDS SGRs due to its higher spatial resolution. However, where they could be constructed, GFDS SGRs predicted discharge more accurately as observations were less affected by cloud and vegetation. We conclude that SGRs are suitable for automated large-scale application and offer a possibility to predict river discharge variations from satellite observations alone, for both gauged and ungauged rivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.