Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Supporting Information
The supporting information is available online at 10.1007/s11427-023-2305-0. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
Probiotics as an effective and safe strategy for controlling Salmonella infection are much sought after, while autophagy is a central issue in eliminating intracellular pathogens of intestinal epithelial cells. In this study, an animal model of colitis has been developed by infecting weaned pigs orally with a strain of Salmonella Infantis in order to illuminate the potential efficacy of a mixture of Lactobacillus and Bacillus (CBB-MIX) in the resistance to Salmonella infection by regulating butyrate-mediated autophagy. We found that CBB-MIX alleviated S. Infantis-induced colitis and tissue damage. Autophagy markers ATG5, Beclin-1, and the LC3-II/I ratio were significantly enhanced by S. Infantis infection, while treatment with CBB-MIX suppressed S. Infantis-induced autophagy. Additionally, S. Infantis-induced colonic microbial dysbiosis was restored by this treatment, which also preserved the abundance of the butyrateproducing bacteria and the butyrate concentration in the colon. A Caco-2 cell model of S. Infantis infection showed that butyrate had the same effect as the CBB-MIX in restraining S. Infantis-induced autophagy activation. Further, the intracellular S. Infantis load assay indicated that butyrate restricted the replication of cytosolic S. Infantis rather than that in Salmonella-containing vacuoles. Suppression of autophagy by knockdown of ATG5 also attenuated S. Infantisinduced cell injury. Moreover, hyper-replication of cytosolic S. Infantis in Caco-2 cells was significantly decreased when autophagy was inhibited. Our data demonstrated that Salmonella may benefit from autophagy for cytosolic replication and butyrate-mediated autophagy inhibition reduced the intracellular Salmonella load in pigs treated with a probiotic mixture of Lactobacillus and Bacillus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.