Abstract:The urban vulnerability poses a serious challenge to achieving sustainable development. With the concentration of the population and the economy, cities must manage the higher frequencies and risks of various hazards and are becoming more vulnerable. Research on the assessment and regulatory control of urban vulnerability is of great significance for both urbanization quality improvement and sustainable development in China or other countries in the world. Because of the complexity of cities and vulnerability concepts, existing studies have focused on different aspects of urban vulnerability. And the research content of urban vulnerability is scattered and relatively independent, leading to a lack of comparability among the research data and resulting in tremendous difficulties in summarizing the conclusions through comparison of independent research data. Therefore the goal of this study was to construct urban vulnerability index (UVI) from the perspective of sustainable development that could assess urban vulnerability comprehensively. In this study, we selected 10 subindexes involving 36 specific parameters from four aspects (resources, eco-environmental systems, economics, and social development) to construct a comprehensive index system. We also established the standard values of measurements. Then we take 288 prefecture-level cities in China as a study area and evaluate its overall urban vulnerability and its spatial differentiation. Results indicate that urban vulnerability of China has a remarkable spatial differentiation of both "gradient distribution" and "clustered distribution"; the extent of urban vulnerability corresponds to city size, the bigger the city, the lower its vulnerability; resource-based cities are more vulnerable than comprehensive cities; a city's economic growth rate does not reflect the extent of its urban vulnerability. Further, we offer a few suggestions to cope with urban vulnerability in China.
Urban agglomerations are spatial entities that promote the development of 'new urbanization' processes within China. In this context, the concept of 'multiscale urban agglomeration spaces' encompasses three linked levels: macroscale urban agglomerations, mesoscale cities, and microscale urban centers. Applying a series of multidisciplinary integrated research methods drawn from geography, urban planning, and architecture, this paper reveals two intensive utilization laws that can be generalized to apply to multiscale urban agglomeration spaces, top-to-bottom 'positive transmission' linkage and inside-to-outside 'negative transmission' movement. This paper also proposes optimization transmission theory and policy decision technical pathways that can be applied to these three urban agglomeration spatial scales. Specific technical pathways of transmission include intensive expansion and simulated decision-making in macroscale urban agglomerations, ecology, production, and living space intensive layout and dynamic decision-making in mesoscale cities, and four cores (i.e., 'single, ring, axis, and pole core') progressive linkage and intensive optimization decision-making in microscale urban centers. The theory and technical pathways proposed in this paper solve the technical problem of optimization and provide intensive methods that can be applied not only at the individual level but also at multiple scales in urban agglomeration spaces. This study also advances a series of comprehensive technical solutions that can be applied to both compact and smart growth cities as well as to urban agglomerations. Solid theoretical support is provided for the optimization of Chinese land development, urbanization, agricultural development, and ecological security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.