Electrochemical conversion of nitrate (NO 3 − ) into ammonia (NH 3 ) recycles nitrogen and offers a route to the production of NH 3 , which is more valuable than dinitrogen gas. However, today's development of NO 3 − electroreduction remains hindered by the lack of a mechanistic picture of how catalyst structure may be tuned to enhance catalytic activity. Here we demonstrate enhanced NO 3 − reduction reaction (NO 3 − RR) performance on Cu 50 Ni 50 alloy catalysts, including a 0.12 V upshift in the half-wave potential and a 6-fold increase in activity compared to those obtained with pure Cu at 0 V vs reversible hydrogen electrode (RHE). Ni alloying enables tuning of the Cu d-band center and modulates the adsorption energies of intermediates such as *NO 3 − , *NO 2 , and *NH 2 . Using density functional theory calculations, we identify a NO 3 − RR-to-NH 3 pathway and offer an adsorption energy−activity relationship for the CuNi alloy system. This correlation between catalyst electronic structure and NO 3 − RR activity offers a design platform for further development of NO 3 − RR catalysts.
Self-healing polymers
with microphase-separated structure are plagued
with inferior self-healing efficiency at room temperature due to a
lack of dynamic interactions in hard domains. Herein, we describe
a novel strategy of multiphase active hydrogen bonds (H-bonds), toward
realizing fast and efficient self-healing at room temperature, even
under harsh conditions. The core conception is to incorporate thiourea
moieties into microphase-separated polyurea network to form multistrength
H-bonds, which destroy the crystallization of hard domains and, at
the same time, insert the dynamic reversible H-bonds in both hard
and soft segments, accounting for the surprisingly self-healing performances.
The synthesized polymeric material, poly(dimethylsiloxane)–4,4′-methylenebis(phenyl
isocyanate)–1,1′-thiocarbonyldiimidazole, completely
recovers all of the mechanical properties within 4 h at room temperature
after rupture. Significantly, self-healing process can also take place
at low temperature (restoration with an 85% efficiency in 48 h at
−20 °C) or in the water (restoration with a 95% efficiency
in 4 h). Depending on the cleavage/reformation of multiphase H-bonds,
the material exhibits unprecedented ultrastrechability and notch-insensitiveness.
It can be stretched up to 31 500% without fracture and reach
a notch-insensitive stretching of up to 18 000%. These exceptional
characteristics inspired us to fabricate highly stretchable self-healable
underwater conductor and protective self-healing film for suppressing
shuttling of polysulfides and preventing crack propagation in S cathode,
which provide the pathway for applications in underwater electronic
devices or advanced Li–S batteries.
Controlling the crystallization of organic–inorganic hybrid perovskite is of vital importance to achieve high performing perovskite solar cells. The growth mechanism of perovskites has been intensively studied in devices with planar structures and traditional structures. However, for the printable mesoscopic perovskite solar cells, it is difficult to study the crystallization mechanism of perovskite owing to the complicated mesoporous structure. Here, a solvent evaporation controlled crystallization method to achieve ideal crystallization in the mesoscopic structure is provided. Combining results of scanning electron microscope and X‐ray diffraction, it is found that adjusting the evaporation rate of solvent can control the crystallization rate of perovskite and a model for the crystallization process during annealing in mesoporous structures is proposed. Finally, a homogeneous pore filling in the mesoscopic structure without any additives is successfully achieved and a stabilized power conversion efficiency of 16.26% using ternary‐cation perovskite absorber is realized. The findings will provide better understanding of perovskite crystallization in printable mesoscopic perovskite solar cells and pave the way for the commercialization of perovskite solar cells.
Solution-processable organic–inorganic
perovskite solar cells have attracted much attention in the past
few years. Energy level alignment is of great importance for improving
the performance of perovskite solar cells because it strongly influences
charge separation and recombination. In this report, we introduce
three amide additives, namely, formamide, acetamide, and urea, into
the MAPbI3 perovskite by mixing them directly in perovskite
precursor solutions. The Fermi level of MAPbI3 shifts from
−4.36
eV to −4.63, −4.65, and −4.61 eV, respectively,
upon addition of these additives. The charge transfer
between perovskite and mp-TiO2 is found to be promoted
as determined via TRPL spectra, and recombination in the perovskite
is suppressed. As a result, the built-in electric field (V
bi) of the printable, hole-conductor-free mesoscopic perovskite
solar cells based on these perovskites with amide additives is enhanced
and a peak power conversion efficiency of 15.57% is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.