Capacitated Vehicle Routing Problem (CVRP) is difficult to solve by the traditional precise methods in the transportation area. The metaheuristic algorithm is often used to solve CVRP and can obtain approximate optimal solutions. Phasmatodea population evolution algorithm (PPE) is a recently proposed metaheuristic algorithm. Given the shortcomings of PPE, such as its low convergence precision, its nature to fall into local optima easily, and it being time-consuming, we propose an advanced Phasmatodea population evolution algorithm (APPE). In APPE, we delete competition, delete conditional acceptance and correspondingevolutionary trend update, and add jump mechanism, history-based searching, and population closing moving. Deleting competition and conditional acceptance and correspondingevolutionary trend update can shorten PPE running time. Adding a jump mechanism makes PPE more likely to jump out of the local optimum. Adding history-based searching and population closing moving improves PPE’s convergence accuracy. Then, we test APPE by CEC2013. We compare the proposed APPE with differential evolution (DE), sparrow search algorithm (SSA), Harris Hawk optimization (HHO), and PPE. Experiment results show that APPE has higher convergence accuracy and shorter running time. Finally, APPE also is applied to solve CVRP. From the test results of the instances, APPE is more suitable to solve CVRP.
BACKGROUND: Beckmannia syzigachne (Steud.) Fernald has evolved herbicide resistance due to the long-term sole use of herbicides and has become a dominant weed in wheat fields in the middle and lower reaches of the Yangtze River in China. In addition to the selection pressure imposed by herbicides, pollen-mediated gene flow (PMGF) has been reported to cause the spread of herbicide resistance between populations within a certain range in some farmland weeds. It is not clear whether the same is true for the self-pollinated grass weed B. syzigachne. RESULTS:In this study, we confirmed and quantified the level of PMGF in B. syzigachne through concentric circle planting and herbicide resistance tests. Results show that when the B. syzigachne pollen donor was close to the recipient (0.5 m), the average gene flow was 0.66%. Gene flow was detected as far as 10 m (the farthest distance studied) and decreased exponentially with increasing distance, which could be described by a double exponential decay model. Temperature also affected gene flow, whilst the average level of gene flow in all directions of wind was similar and wind speed caused insignificant difference in gene flow. CONCLUSION:The results of this study confirmed that PMGF can occur between B. syzigachne populations in adjacent fields. Although the level of resistance spreading by pollen was low, especially across long distance, the results were relevant for smallholding farms, which is the dominant form of agricultural operation in China. It is therefore important to take proactive measures and integrate chemical and ecological weed control methods to prevent the spread of resistant B. syzigachne via both seeds and pollens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.