In this paper, we propose the USIP detector: an Unsupervised Stable Interest Point detector that can detect highly repeatable and accurately localized keypoints from 3D point clouds under arbitrary transformations without the need for any ground truth training data. Our USIP detector consists of a feature proposal network that learns stable keypoints from input 3D point clouds and their respective transformed pairs from randomly generated transformations. We provide degeneracy analysis of our USIP detector and suggest solutions to prevent it. We encourage high repeatability and accurate localization of the keypoints with a probabilistic chamfer loss that minimizes the distances between the detected keypoints from the training point cloud pairs. Extensive experimental results of repeatability tests on several simulated and real-world 3D point cloud datasets from Lidar, RGB-D and CAD models show that our USIP detector significantly outperforms existing hand-crafted and deep learning-based 3D keypoint detectors. Our code is available at the project website. 1 * now at nuTonomy: an APTIV company.
Joint detection and embedding (JDE) methods usually fuse the target motion information and appearance information as the data association matrix, which could fail when the target is briefly lost or blocked in multi-object tracking (MOT). In this paper, we aim to solve this problem by proposing a novel association matrix, the Embedding and GioU (EG) matrix, which combines the embedding cosine distance and GioU distance of objects. To improve the performance of data association, we develop a simple, effective, bottom-up fusion tracker for re-identity features, named SimpleTrack, and propose a new tracking strategy which can mitigate the loss of detection targets. To show the effectiveness of the proposed method, experiments are carried out using five different state-of-the-art JDE-based methods. The results show that by simply replacing the original association matrix with our EG matrix, we can achieve significant improvements in IDF1, HOTA and IDsw metrics, and increase the tracking speed of these methods by around 20%. In addition, our SimpleTrack has the best data association capability among the JDE-based methods, e.g., 61.6 HOTA and 76.3 IDF1, on the test set of MOT17 with 23 FPS running speed on a single GTX2080Ti GPU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.