Air pollution is one of the most concerning environmental problems in cities. Hourly data on pollutant concentrations from 11 automatic atmospheric monitoring stations and meteorological data in Shenyang from 2017 to 2019 were used to analyze the spatio-temporal variation rules of CO (carbon monoxide), SO2 (sulfur dioxide), NO2 (nitrogen dioxide), O3 (ozone), PM2.5 and PM10 (PM particles with an aerodynamic diameters of not more than 2.5 µm and 10 µm) and their relationships with meteorological parameters. Meanwhile, the regional transmission route of pollutants was analyzed by the hybrid single particle Lagrangian integrated trajectory (HYSPLIT) model. The results showed that the concentration of O3 in the northern area of the city was higher than that in the south; CO, SO2 and NO2 were relatively high in the urban center; and PM2.5 and PM10 were relatively high in the southwest. The average concentration of pollutants was lowest in 2019. The concentration of O3 was the highest in spring, while CO showed no significant variations between different seasons. The remaining pollutant concentrations appeared to be high in winter and low in summer. The cumulative concentrations of the six pollutants were the highest in March, and relatively low in July–September. The diurnal concentration variations of O3, CO and SO2 exhibited a “single peak,” while others showed a “double peak and double valley.” Temperature was positively correlated with O3 concentration and negatively correlated with others. Wind speed was negatively correlated with the concentration of PM2.5, NO2, and O3. The air quality of the main urban area in spring and summer was mainly affected by the coastal air flow, while it was mostly affected by the northwest air flow in autumn and winter.
Air pollution has become one of the important concerns of environmental pollution in the Beijing–Tianjin–Hebei region. As an important city in Beijing–Tianjin–Hebei, Shijiazhuang has long been ranked in the bottom ten in terms of air quality in the country. In order to effectively grasp the influencing factors and current distribution of air pollution in Shijiazhuang City, this paper collects data on the top air pollutants in Shijiazhuang from 2017 to 2019, analyzes the characteristics of time changes in the region, and uses the Kriging interpolation method to affect the air pollutants in this area. The spatial distribution characteristics are studied. The results show (1) From 2017 to 2019, the environmental quality of Shijiazhuang City showed a decreasing trend except for O3. (2) Seasonal changes show that NO2, PM2.5, and CO show as winter > autumn > spring > summer, PM10, SO2 show as winter > spring > autumn > summer, and O3 concentration changes as summer > spring > autumn > winter. (3) The daily change trends of NO2, SO2, PM10 and PM2.5 are similar, while the change trends of O3 and NO2 are opposite. (4) The correlations between air quality index (AQI) and concentrations suggest that PM10, PM2.5, and CO contribute the most to undesirable pollution levels in this area, while NO2, SO2, and O3 contribute less to undesirable pollution. We have concluded that the particulate pollution in Shijiazhuang City has been effectively controlled, thanks to the relevant measures introduced by the government, but the O3-based compound pollution is gradually increasing, so particulate pollution and O3 pollution need to be treated together. The research results of this article have important practical significance for urban or regional air environment monitoring and prevention.
The increase in tropospheric ozone (O3) concentration has become one of the factors restricting urban development. This paper selected the important economic cooperation areas in Northeast China as the research object and collected the hourly monitoring data of pollutants and meteorological data in 11 cities from 1 January 2015 to 31 December 2019. The temporal and spatial variation trend of O3 concentration and the effects of meteorological factors and other pollutants, including CO (carbon monoxide), SO2 (sulfur dioxide), NO2 (nitrogen dioxide), and PM2.5 and PM10 (PM particles with aerodynamic diameters less than 2.5 μm and 10 μm) on ozone concentration were analyzed. At the same time, the variation period of O3 concentration was further analyzed by Morlet wavelet analysis. The results showed that the O3 pollution in the study area had a significant spatial correlation. The spatial distribution showed that the O3 concentration was relatively high in the south and low in the northeast. Seasonally, the O3 concentration was the highest in spring, followed by summer, and the lowest in winter. The diurnal variation of O3 concentration presented a “single peak” pattern. O3 concentration had a significant positive correlation with temperature, sunshine duration, and wind speed and a significant anticorrelation with CO, NO2, SO2, and PM2.5 concentration. Under the time scale of a = 9, 23, O3 had significant periodic fluctuation, which was similar to those of wind speed and temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.