Continual learning has gained increasing attention in recent years, thanks to its biological interpretation and efficiency in many realworld applications. As a typical task of continual learning, continual relation extraction (CRE) aims to extract relations between entities from texts, where the samples of different relations are delivered into the model continuously. Some previous works have proved that storing typical samples of old relations in memory can help the model keep a stable understanding of old relations and avoid forgetting them. However, most methods heavily depend on the memory size in that they simply replay these memorized samples in subsequent tasks. To fully utilize memorized samples, in this paper, we employ relation prototype to extract useful information of each relation. Specifically, the prototype embedding for a specific relation is computed based on memorized samples of this relation, which is collected by K-means algorithm. The prototypes of all observed relations at current learning stage are used to re-initialize a memory network to refine subsequent sample embeddings, which ensures the model's stable understanding on all observed relations when learning a new task. Compared with previous CRE models, our model utilizes the memory information sufficiently and efficiently, resulting in enhanced CRE performance. Our experiments show that the proposed model outperforms the state-of-the-art CRE models and has great advantage in avoiding catastrophic forgetting. The code and datasets have been released on https://github.com/fd2014cl/RP-CRE.
Data stream learning in non-stationary environments and skewed class distributions has been receiving more attention in machine learning communities. This paper proposes a novel ensemble classification method (ECSDS) for classifying data streams with skewed class distributions. In the proposed ensemble method, back-propagation neural network is selected as the base classifier. In order to demonstrate the effectiveness of our proposed method, we choose three baseline methods based on ECSDS and evaluate their overall performance on ten datasets from UCI machine learning repository. Moreover, the performance of incremental learning is also evaluated by these datasets. The experimental results show our proposed method can effectively deal with classification problems on non-stationary data streams with class imbalance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.