For the first time, actinide endohedral metallofullerenes (EMFs) with non-isolated-pentagon-rule (non-IPR) carbon cages, U@C80, Th@C80, and U@C76, have been successfully synthesized and fully characterized by mass spectrometry, single crystal X-ray diffractometry, UV–vis–NIR and Raman spectroscopy, and cyclic voltammetry. Crystallographic analysis revealed that the U@C80 and Th@C80 share the same non-IPR cage of C 1(28324)-C80, and U@C76 was assigned to non-IPR U@C 1(17418)-C76. All of these cages are chiral and have never been reported before. Further structural analyses show that enantiomers of C 1(17418)-C76 and C 1(28324)-C80 share a significant continuous portion of the cage and are topologically connected by only two C2 insertions. DFT calculations show that the stabilization of these unique non-IPR fullerenes originates from a four-electron transfer, a significant degree of covalency, and the resulting strong host–guest interactions between the actinide ions and the fullerene cages. Moreover, because the actinide ion displays high mobility within the fullerene, both the symmetry of the carbon cage and the possibility of forming chiral fullerenes play important roles to determine the isomer abundances at temperatures of fullerene formation. This study provides what is probably one of the most complete examples in which carbon cage selection occurs through thermodynamic control at high temperatures, so the selected cages do not necessarily coincide with the most stable ones at room temperature. This work also demonstrated that the metal–cage interactions in actinide EMFs show remarkable differences from those previously known for lanthanide EMFs. These unique interactions not only could stabilize new carbon cage structures, but more importantly, they lead to a new family of metallofullerenes for which the cage selection pattern is different to that observed so far for nonactinide EMFs. For this new family, the simple ionic A q+@C2n q– model makes predictions less reliable, and in general, unambiguously discerning the isolated structures requires the combination of accurate computational and experimental data.
A new class of single‐molecule magnets (SMMs) based on Dy‐oxide clusterfullerenes is synthesized. Three isomers of Dy2O@C82 with C s(6), C 3v(8), and C 2v(9) cage symmetries are characterized by single‐crystal X‐ray diffraction, which shows that the endohedral Dy−(µ2‐O)−Dy cluster has bent shape with very short Dy−O bonds. Dy2O@C82 isomers show SMM behavior with broad magnetic hysteresis, but the temperature and magnetization relaxation depend strongly on the fullerene cage. The short Dy−O distances and the large negative charge of the oxide ion in Dy2O@C82 result in the very strong magnetic anisotropy of Dy ions. Their magnetic moments are aligned along the Dy−O bonds and are antiferromagnetically (AFM) coupled. At low temperatures, relaxation of magnetization in Dy2O@C82 proceeds via the ferromagnetically (FM)‐coupled excited state, giving Arrhenius behavior with the effective barriers equal to the AFM‐FM energy difference. The AFM‐FM energy differences of 5.4–12.9 cm−1 in Dy2O@C82 are considerably larger than in SMMs with {Dy2O2} bridges, and the Dy∙∙∙Dy exchange coupling in Dy2O@C82 is the strongest among all dinuclear Dy SMMs with diamagnetic bridges. Dy‐oxide clusterfullerenes provide a playground for the further tuning of molecular magnetism via variation of the size and shape of the fullerene cage.
Novel actinide cluster fullerenes, U2C2@I h (7)-C80 and U2C2@D 3h (5)-C78, were synthesized and fully characterized by mass spectrometry, single-crystal X-ray crystallography, UV–vis–NIR, nuclear magnetic resonance spectroscopy (NMR), X-ray absorption spectroscopy (XAS), Raman spectroscopy, IR spectroscopy, as well as density functional and multireference wave function calculations. The encapsulated U2C2 is the first example of a uranium carbide cluster featuring two U centers bridged by a CC unit. The U–C bond distances in these U2C2 clusters are in the range between 2.130 and 2.421 Å. While the U2C2 cluster in U2C2@C80 adopts a butterfly-shaped geometry with a U–C2–U dihedral angle of 112.7° and a U–U distance of 3.855 Å, the U–U distance in U2C2@C78 is 4.164 Å and the resulting U–C2–U dihedral angle is increased to 149.1°. The combined experimental and quantum-chemical results suggest that the formal U oxidation state is +4 in the U2C2 cluster, and each U center transfers three electrons to the C2n cage and one electron to C2. Different from the strong UC covalent bonding reported for U2C@C80, the U–C bonds in U2C2 are less covalent and predominantly ionic. The C–C triple bond is somewhat weaker than in HCCH, and the C–C π bonds undergo donation bonding with the U centers. This work demonstrates that the combination of the unique encapsulation effect of fullerene cages and the variable oxidation states of actinide elements can lead to the stabilization of novel actinide clusters, which are not accessible by conventional synthetic methods.
The nature of the actinide-actinide bonds is of fundamental importance to understand the electronic structure of the 5f elements. It has attracted considerable theoretical attention, but little is known experimentally as the synthesis of these chemical bonds remains extremely challenging. Herein, we report a strong covalent Th-Th bond formed between two rarely accessible Th3+ ions, stabilized inside a fullerene cage nanocontainer as Th2@Ih(7)-C80. This compound is synthesized using the arc-discharge method and fully characterized using several techniques. The single-crystal X-Ray diffraction analysis determines that the two Th atoms are separated by 3.816 Å. Both experimental and quantum-chemical results show that the two Th atoms have formal charges of +3 and confirm the presence of a strong covalent Th-Th bond inside Ih(7)-C80. Moreover, density functional theory and ab initio multireference calculations suggest that the overlap between the 7s/6d hybrid thorium orbitals is so large that the bond still exists at Th-Th separations larger than 6 Å. This work demonstrates the authenticity of covalent actinide metal-metal bonds in a stable compound and deepens our fundamental understanding of f element metal bonds.
A novel actinide endohedral fullerene with an unexpected chiral cage, Th@C1(11)-C86, was synthesized and characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.