The phase arrival picking of the downhole microseismic dataset is a critical step in fracturing monitoring data processing. Recently, data-driven methods have been widely used in seismology studies, especially in seismic phase picking. The picking results heavily depend on whether large quantities of accurately labeled phase samples could be obtained to extract the characteristics of seismic waveforms. Also, there is a shortcoming of poor generalization ability in dealing with the cross-source transfer scenarios. In this paper, we propose a novel deep transfer learning method for microseismic phase arrival picking by fine-tuning one existing pretrained model based on a few phase samples. The pretrained model, which has been domain-adapted for phase picking, adopts 2D U-Net to both extract time and space features, thereby improving the overall picking accuracy. Moreover, the fully convolutional U-Net architecture has the ability to handle samples with variable sizes so could be used for bridging downhole microseismic data from different sources. The results of two transfer cases show that compared with the direct application of the pretrained model and a newly trained model, the proposed method could provide more satisfactory performance with only limited seismic phase samples. Also, our method significantly reduces the cost of labeling and saves time because of avoiding repeated training.
Arrival-time picking is a critical step in microseismic data processing, and thus the quality control of arrival results is necessary. Conventional picking methods may be inaccurate or inconsistent due to varied signal-to-noise ratios (SNR) and waveform patterns of the events recorded in different time sections. To address this issue, we propose a quality assessment method based on waveform similarity coefficients to evaluate arrival results and also a global optimization algorithm based on iterative cross-correlation to refine arrival times. The recordings after moveout correction are applied to calculate the intra-event and inter-event waveform coefficients for the quality assessment of arrival results. The residual time differences of intra-event and inter-event traces are calculated sequentially using an enhanced iterative cross-correlation method. In addition, the stacked waveform of each event after the intra-event residual time correction is introduced for global optimization to obtain the inter-event residual time discrepancies. We use both synthetic data and field data to validate the proposed method. The results indicate that the proposed method yields more robust and reliable results. The quality assessment of the optimized arrivals is greatly enhanced compared to the adjusted picks obtained from single event-based processing methods.
The spectral decomposition is a valuable tool for improving the resolution of seismic interpretation, and thus can improve the accuracy of the subtle geo-features (thin and narrow channels, thin reservoirs, etc.). Variational mode decomposition (VMD) is an adaptive signal decomposition algorithm that non-recursively decomposes multicomponent signals into several band-limited intrinsic mode functions, which is competitive in enhancing time-frequency resolution. However, discontinuity is normally caused by the trace-by-trace process, making the 3D seismic interpretation difficult. To address this issue, we present a novel seismic geological channel detection method for 3D seismic dataset based on multi-trace variational mode decomposition (MTVMD). The proposed method decomposes the broadband seismic data into several intrinsic mode functions and then computes seismic attributes from each component for geological feature analysis. Further tested by field seismic case, the proposed method demonstrates strength in depicting the detailed edges and sedimentary signatures of paleochannels. Overall, the proposed method provides an alternative approach to identifying seismic channels, especially for the detailed portrayals of subtle geo-features in low-quality seismic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.