The accuracy of the velocity model strongly affects the accuracy of microseismic source location and hence the reliability of fracture imaging. We have developed a systematic methodology for microseismic velocity model inversion and source location. A new misfit function is used for both problems, which yields more reliable result than the conventional ones. Using the same measure of misfit, the location errors resulting from the use of different misfit functions are eliminated. The neighborhood algorithm and master station method (MSM) are adopted for calculating the velocity model and source location, respectively. The reason for using the neighborhood algorithm is that it has fewer tuning parameters and is easy to be tuned, whereas the advantage of the MSM is that it can automatically remove the mispicks. The performance of the proposed methods is illustrated using the ball-hit events with known locations, and the validity of the inversion results is verified by the relocations of these events. We also used the inverted velocity models to locate the microseismic events detected from the monitoring data. The location result indicates that the fractures have an average half-length of 280 m and height of 55 m and the fracture azimuth is approximately N77°W.
Perfluoroisobutylene (PFIB) is a highly toxic gas that targets the lungs. Low-level inhalation of the gas can lead to acute lung injury (ALI), pulmonary edema and even death. No specific anti-PFIB drugs are currently available and the pathogenesis of PFIB-induced ALI is not fully understood. Early direct oxidative injury and a secondary hyper-inflammatory response are recognized as the primary mechanisms of PFIB-induced ALI. In the present study, our data demonstrate for the first time that a cytokine storm is associated with PFIB-induced ALI. Levels of 10 pro-inflammatory cytokines and one anti-inflammatory cytokine were significantly increased in lung tissues of PFIB-exposed mice. PFIB inhalation additionally led to significant oxidative stress in lung tissue. Inflammation-associated CD11bLy6GLy6C neutrophils and CD11bLy6GLy6C monocytes were significantly increased in blood in association with PFIB-induced ALI. Bcl-2/Bax-mediated lung cell apoptosis was significantly increased at 1 h, followed by a sustained decrease after 1 h, which was significant at 4-8 h in PFIB-exposed mice. This suppression of apoptosis is possibly associated with the Akt-signaling pathway.
Arrival-time picking is a critical step in microseismic data processing, and thus the quality control of arrival results is necessary. Conventional picking methods may be inaccurate or inconsistent due to varied signal-to-noise ratios (SNR) and waveform patterns of the events recorded in different time sections. To address this issue, we propose a quality assessment method based on waveform similarity coefficients to evaluate arrival results and also a global optimization algorithm based on iterative cross-correlation to refine arrival times. The recordings after moveout correction are applied to calculate the intra-event and inter-event waveform coefficients for the quality assessment of arrival results. The residual time differences of intra-event and inter-event traces are calculated sequentially using an enhanced iterative cross-correlation method. In addition, the stacked waveform of each event after the intra-event residual time correction is introduced for global optimization to obtain the inter-event residual time discrepancies. We use both synthetic data and field data to validate the proposed method. The results indicate that the proposed method yields more robust and reliable results. The quality assessment of the optimized arrivals is greatly enhanced compared to the adjusted picks obtained from single event-based processing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.