Abstract. Isotopic compositions of Mercury (Hg) in atmospheric particles (HgPM) are probably the mixed results of emission sources and atmospheric processes. Here, we present Hg isotopic compositions in daily fine particles (PM2.5) collected from an industrial site (Chunxiao – CX) and a nearby mountain site (Daimeishan – DMS) in a coastal area of East China, and in surface seawater close to the industrial area, to reveal the influence of anthropogenic emission sources and atmospheric transformations on Hg isotopes. The PM2.5 samples displayed a significant spatial difference in δ202Hg. For the CX site, the negative δ202Hg values are similar to those of source materials, and the HgPM contents were well correlated with chemical tracers, indicating the dominant contributions of local industrial activities to HgPM2.5, whereas the observed positive δ202Hg at the DMS site was likely associated with regional emissions and extended atmospheric processes during transport. The Δ199Hg values in PM2.5 from the CX and DMS sites were comparably positive. The unity slope of Δ199Hg versus Δ201Hg over all data suggests that the odd mass independent fractionation (MIF) of HgPM2.5 was primarily induced by the photoreduction of Hg2+ in aerosols. The positive Δ200Hg values with a minor spatial difference were probably associated with the photooxidation of Hg0, which is generally enhanced in the coastal environment. Total Hg in offshore surface seawater was characterized by negative δ202Hg and near-zero Δ199Hg and Δ200Hg values, which are indistinguishable from Hg isotopes of source materials. Overall, the PM2.5 collected from industrial areas had comparable δ202Hg values but more positive Δ199Hg and Δ200Hg as compared to surface seawater. The results indicate that atmospheric transformations would induce the significant fractionation of Hg isotopes and obscure the Hg isotopic signatures of anthropogenic emissions.
Abstract. The long-term monitoring of atmospheric mercury is an important part of the effective evaluation of the Minamata Convention on Mercury. Gaseous elemental mercury (GEM), along with conventional air pollutants and meteorological parameters, was simultaneously observed in Xiamen, Southeast China, in January and July over the period 2012–2020. GEM concentrations in January were highest in 2015 (4.47 ng m−3) and decreased by 2020 (3.93 ng m−3), while GEM concentrations in July were highest in 2017 (2.65 ng m−3) and lowest in 2020 (1.56 ng m−3). The temporal variation of GEM was typically characterized by higher concentrations in winter than in summer and in nighttime than in daytime. Bivariate polar plots and the concentration-weighted trajectory (CWT) model were used to identify the source regions of GEM on a local and regional scale. The results indicate that the high GEM concentrations in January 2015 were likely due to a combination of high-level Hg emissions and adverse meteorological conditions. Generalized additive models (GAMs), which use a regression analysis method, were established and applied to investigate the influencing factors on the inter-annual variation of GEM. The factors anthropogenic emissions, meteorological conditions, and transportation explained 37.8 %±11.9 %, 31.4 %±9.0 %, and 30.8 %±9.9 % on average of the variation of GEM concentrations, respectively. There was a positive relationship of daily GEM concentrations with T and RH, mostly linking to natural surface emissions and Hg chemical transformations. The interpretation rate of anthropogenic emissions has significantly decreased since 2012, indicating the effectiveness of emission mitigation measures in reducing GEM concentrations in the study region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.