PurposeThe efficacy of neoadjuvant chemoradiotherapy (NCRT) plus surgery for locally advanced esophageal squamous cell carcinoma (ESCC) remains controversial. In this trial, we compared the survival and safety of NCRT plus surgery with surgery alone in patients with locally advanced ESCC.Patients and MethodsFrom June 2007 to December 2014, 451 patients with potentially resectable thoracic ESCC, clinically staged as T1-4N1M0/T4N0M0, were randomly allocated to NCRT plus surgery (group CRT; n = 224) and surgery alone (group S; n = 227). In group CRT, patients received vinorelbine 25 mg/m2 intravenously (IV) on days 1 and 8 and cisplatin 75 mg/m2 IV day 1, or 25 mg/m2 IV on days 1 to 4 every 3 weeks for two cycles, with a total concurrent radiation dose of 40.0 Gy administered in 20 fractions of 2.0 Gy on 5 days per week. In both groups, patients underwent McKeown or Ivor Lewis esophagectomy. The primary end point was overall survival.ResultsThe pathologic complete response rate was 43.2% in group CRT. Compared with group S, group CRT had a higher R0 resection rate (98.4% v 91.2%; P = .002), a better median overall survival (100.1 months v 66.5 months; hazard ratio, 0.71; 95% CI, 0.53 to 0.96; P = .025), and a prolonged disease-free survival (100.1 months v 41.7 months; hazard ratio, 0.58; 95% CI, 0.43 to 0.78; P < .001). Leukopenia (48.9%) and neutropenia (45.7%) were the most common grade 3 or 4 adverse events during chemoradiotherapy. Incidences of postoperative complications were similar between groups, with the exception of arrhythmia (group CRT: 13% v group S: 4.0%; P = .001). Peritreatment mortality was 2.2% in group CRT versus 0.4% in group S (P = .212).ConclusionThis trial shows that NCRT plus surgery improves survival over surgery alone among patients with locally advanced ESCC, with acceptable and manageable adverse events.
Clinicians rely upon the severity of liver fibrosis to segregate patients with well-compensated nonalcoholic fatty liver disease (NAFLD) into sub-populations at high versus low-risk for eventual liver-related morbidity and mortality. We compared hepatic gene expression profiles in high- and low-risk NAFLD patients to identify processes that distinguish the two groups and hence, might be novel biomarkers or treatment targets. Microarray analysis was used to characterize gene expression in percutaneous liver biopsies from low-risk, “mild” NAFLD patients (fibrosis stage 0–1, n=40) and high risk, “severe” NAFLD patients (fibrosis stage 3–4, n=32). Findings were validated in a second, independent cohort and confirmed by real time PCR and immunohistochemistry. As a group, patients at risk for bad NAFLD outcomes had significantly worse liver injury and more advanced fibrosis (severe NAFLD) than clinically-indistinguishable NAFLD patients with a good prognosis (mild NAFLD). A 64 gene profile reproducibly differentiated severe NAFLD from mild NAFLD, and a 20 gene subset within this profile correlated with NAFLD severity, independent of other factors known to influence NAFLD progression. Multiple genes involved with tissue repair/regeneration and certain metabolism-related genes were induced in severe NAFLD. Ingenuity Pathway Analysis and immunohistochemistry confirmed deregulation of metabolic and regenerative pathways in severe NAFLD, and revealed overlap among the gene expression patterns of severe NAFLD, cardiovascular disease, and cancer. Conclusion By demonstrating specific metabolic and repair pathways that are differentially activated in livers with severe NAFLD, gene profiling identified novel targets that can be exploited to improve diagnosis and treatment of patients who are at greatest risk for NAFLD-related morbidity and mortality.
Nonalcoholic steatohepatitis (NASH) is a leading cause of cirrhosis. Recently, we showed that NASH-related cirrhosis is associated with Hedgehog (Hh) pathway activation. The gene encoding osteopontin (OPN), a profibrogenic extracellular matrix protein and cytokine, is a direct transcriptional target of the Hh pathway. Thus, we hypothesize that Hh signaling induces OPN to promote liver fibrosis in NASH. Hepatic OPN expression and liver fibrosis were analyzed in wild-type (WT) mice, Patched-deficient (Ptc 1/2 ) (overly active Hh signaling) mice, and OPNdeficient mice before and after feeding methionine and choline-deficient (MCD) diets to induce NASH-related fibrosis. Hepatic OPN was also quantified in human NASH and nondiseased livers. Hh signaling was manipulated in cultured liver cells to assess direct effects on OPN expression, and hepatic stellate cells (HSCs) were cultured in medium with different OPN activities to determine effects on HSC phenotype. When fed MCD diets, Ptc 1/2 mice expressed more OPN and developed worse liver fibrosis (P < 0.05) than WT mice, whereas OPN-deficient mice exhibited reduced fibrosis (P < 0.05). In NASH patients, OPN was significantly up-regulated and correlated with Hh pathway activity and fibrosis stage. During NASH, ductular cells strongly expressed OPN. In cultured HSCs, SAG (an Hh agonist) up-regulated, whereas cyclopamine (an Hh antagonist) repressed OPN expression (P < 0.005). Cholangiocyte-derived OPN and recombinant OPN promoted fibrogenic responses in HSCs (P < 0.05); neutralizing OPN with RNA aptamers attenuated this (P < 0.05). Conclusion: OPN is Hh-regulated and directly promotes profibrogenic responses. OPN induction correlates with Hh pathway activity and fibrosis stage. Therefore, OPN inhibition may be beneficial in NASH (HEPATOLOGY 2011;53:106-115) N onalcoholic steatohepatitis (NASH) is a potentially serious form of chronic liver injury because it increases the risk of developing cirrhosis and primary liver cancer. The mechanisms that lead to these outcomes have not been fully elucidated, but they appear to involve responses triggered
Background & Aims Pathogenesis of cirrhosis, a disabling outcome of defective liver repair, involves deregulated accumulation of myofibroblasts derived from quiescent hepatic stellate cells (HSC), but the mechanisms that control HSC transdifferentiation are poorly understood. We investigated whether the Hedgehog (Hh) pathway controls HSC fate by regulating metabolism. Methods Microarray, quantitative PCR, and immunoblot analyses were used to identify metabolic genes that were differentially expressed in quiescent vs myofibroblast HSC. Glycolysis and lactate production were disrupted in HSC to determine if metabolism influenced transdifferentiation. Hh signaling and hypoxia-inducible factor (HIF)1α activity were altered to identify factors that alter glycolytic activity. Changes in expression of genes that regulate glycolysis were quantified and localized in biopsy samples from patients with cirrhosis, and liver samples from mice following administration of CCl4 or bile-duct ligation. Mice were given systemic inhibitors of Hh to determine if they affect glycolytic activity of the hepatic stroma; Hh signaling was also conditionally disrupted in myofibroblasts to determine the effects of glycolytic activity. Results Transdifferentiation of cultured, quiescent HSC into myofibroblasts induced glycolysis and caused lactate accumulation. Increased expression of genes that regulate glycolysis required Hh signaling and involved induction of HIF1α. Inhibitors of Hh signaling, HIF1α, glycolysis, or lactate accumulation converted myofibroblasts to quiescent HSC. In diseased livers of animals and patients, numbers of glycolytic stromal cells were associated with the severity of fibrosis. Conditional disruption of Hh signaling in myofibroblasts reduced numbers of glycolytic myofibroblasts and liver fibrosis in mice; similar effects were observed following administration of pharmacologic inhibitors of Hh. Conclusions Hedgehog signaling controls HSC fate by regulating metabolism. These findings might be applied to diagnosis and treatment of cirrhosis.
Immune responses are important in dictating nonalcoholic steatohepatitis (NASH) outcome. We previously reported that upregulation of hedgehog (Hh) and osteopontin (OPN) occurs in NASH, that Hh-regulated accumulation of natural killer T (NKT) cells promotes hepatic stellate cell (HSC) activation, and that cirrhotic livers harbor large numbers of NKT cells. Here, we evaluated the hypothesis that activated NKT cells drive fibrogenesis during NASH by assessing if NKT depletion protects against NASH-fibrosis; identifying the NKT associated fibrogenic factors; and correlating plasma levels of the NKT cell-associated factor OPN with fibrosis severity in mice and humans. When fed methionine choline deficient (MCD) diets for 8 weeks, WT mice exhibited Hh pathway activation, enhanced OPN expression, and NASH-fibrosis. Jα18−/− and CD1d−/− mice which lack NKT cells had significantly attenuated Hh and OPN expression and dramatically less fibrosis. Liver mononuclear cells (LMNC) from MCD diet-fed WT mice contained activated NKT cells, generated Hh and OPN, and stimulated hepatic stellate cells (HSC) to become myofibroblasts (MF); neutralizing these factors abrogated the fibrogenic actions of WT LMNC. LMNC from NKT cell deficient mice were deficient in fibrogenic factors, failing to activate collagen gene expression in HSC. Human NASH livers with advanced fibrosis contained more OPN and Hh protein than those with early fibrosis. Plasma levels of OPN mirrored hepatic OPN expression, and correlated with fibrosis severity. In conclusion, hepatic NKT cells drive production of OPN and Hh ligands that promote fibrogenesis during NASH. Associated increases in plasma levels of OPN may provide a biomarker of NASH-fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.