Nonalcoholic steatohepatitis (NASH) is a leading cause of cirrhosis. Recently, we showed that NASH-related cirrhosis is associated with Hedgehog (Hh) pathway activation. The gene encoding osteopontin (OPN), a profibrogenic extracellular matrix protein and cytokine, is a direct transcriptional target of the Hh pathway. Thus, we hypothesize that Hh signaling induces OPN to promote liver fibrosis in NASH. Hepatic OPN expression and liver fibrosis were analyzed in wild-type (WT) mice, Patched-deficient (Ptc 1/2 ) (overly active Hh signaling) mice, and OPNdeficient mice before and after feeding methionine and choline-deficient (MCD) diets to induce NASH-related fibrosis. Hepatic OPN was also quantified in human NASH and nondiseased livers. Hh signaling was manipulated in cultured liver cells to assess direct effects on OPN expression, and hepatic stellate cells (HSCs) were cultured in medium with different OPN activities to determine effects on HSC phenotype. When fed MCD diets, Ptc 1/2 mice expressed more OPN and developed worse liver fibrosis (P < 0.05) than WT mice, whereas OPN-deficient mice exhibited reduced fibrosis (P < 0.05). In NASH patients, OPN was significantly up-regulated and correlated with Hh pathway activity and fibrosis stage. During NASH, ductular cells strongly expressed OPN. In cultured HSCs, SAG (an Hh agonist) up-regulated, whereas cyclopamine (an Hh antagonist) repressed OPN expression (P < 0.005). Cholangiocyte-derived OPN and recombinant OPN promoted fibrogenic responses in HSCs (P < 0.05); neutralizing OPN with RNA aptamers attenuated this (P < 0.05). Conclusion: OPN is Hh-regulated and directly promotes profibrogenic responses. OPN induction correlates with Hh pathway activity and fibrosis stage. Therefore, OPN inhibition may be beneficial in NASH (HEPATOLOGY 2011;53:106-115) N onalcoholic steatohepatitis (NASH) is a potentially serious form of chronic liver injury because it increases the risk of developing cirrhosis and primary liver cancer. The mechanisms that lead to these outcomes have not been fully elucidated, but they appear to involve responses triggered
Immune responses are important in dictating nonalcoholic steatohepatitis (NASH) outcome. We previously reported that upregulation of hedgehog (Hh) and osteopontin (OPN) occurs in NASH, that Hh-regulated accumulation of natural killer T (NKT) cells promotes hepatic stellate cell (HSC) activation, and that cirrhotic livers harbor large numbers of NKT cells. Here, we evaluated the hypothesis that activated NKT cells drive fibrogenesis during NASH by assessing if NKT depletion protects against NASH-fibrosis; identifying the NKT associated fibrogenic factors; and correlating plasma levels of the NKT cell-associated factor OPN with fibrosis severity in mice and humans. When fed methionine choline deficient (MCD) diets for 8 weeks, WT mice exhibited Hh pathway activation, enhanced OPN expression, and NASH-fibrosis. Jα18−/− and CD1d−/− mice which lack NKT cells had significantly attenuated Hh and OPN expression and dramatically less fibrosis. Liver mononuclear cells (LMNC) from MCD diet-fed WT mice contained activated NKT cells, generated Hh and OPN, and stimulated hepatic stellate cells (HSC) to become myofibroblasts (MF); neutralizing these factors abrogated the fibrogenic actions of WT LMNC. LMNC from NKT cell deficient mice were deficient in fibrogenic factors, failing to activate collagen gene expression in HSC. Human NASH livers with advanced fibrosis contained more OPN and Hh protein than those with early fibrosis. Plasma levels of OPN mirrored hepatic OPN expression, and correlated with fibrosis severity. In conclusion, hepatic NKT cells drive production of OPN and Hh ligands that promote fibrogenesis during NASH. Associated increases in plasma levels of OPN may provide a biomarker of NASH-fibrosis.
Background & Aims Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). Methods MF-HSCs and cholangiocytes were exposed to platelet-derived growth factor (PDGF) to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy (TEM) and immunoblots, and applied to Hh-reporter containing cells. Microparticles were also obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, a Hh signaling inhibitor. Effects on SEC gene expression were evaluated by QRT-PCR and immunoblotting. Finally, Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Results PDGF-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically active Hh ligands. BDL also increased release of Hh-containing exosome-enriched microparticles into plasma and bile. TEM and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Conclusions Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.
Trans-differentiation of quiescent hepatic stellate cells (Q-HSCsLeptin-ObRb interactions were not necessary for HSC transdifferentiation to occur in vitro or in vivo but are important because liver fibrogenesis was attenuated in db/db mice. These findings reveal that leptin activates Hh signaling to alter gene expression programs that control cell fate and have important implications for liver fibrosis and other leptin-regulated processes involving EMTs, including development, obesity, and cancer metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.