Immune responses are important in dictating nonalcoholic steatohepatitis (NASH) outcome. We previously reported that upregulation of hedgehog (Hh) and osteopontin (OPN) occurs in NASH, that Hh-regulated accumulation of natural killer T (NKT) cells promotes hepatic stellate cell (HSC) activation, and that cirrhotic livers harbor large numbers of NKT cells. Here, we evaluated the hypothesis that activated NKT cells drive fibrogenesis during NASH by assessing if NKT depletion protects against NASH-fibrosis; identifying the NKT associated fibrogenic factors; and correlating plasma levels of the NKT cell-associated factor OPN with fibrosis severity in mice and humans. When fed methionine choline deficient (MCD) diets for 8 weeks, WT mice exhibited Hh pathway activation, enhanced OPN expression, and NASH-fibrosis. Jα18−/− and CD1d−/− mice which lack NKT cells had significantly attenuated Hh and OPN expression and dramatically less fibrosis. Liver mononuclear cells (LMNC) from MCD diet-fed WT mice contained activated NKT cells, generated Hh and OPN, and stimulated hepatic stellate cells (HSC) to become myofibroblasts (MF); neutralizing these factors abrogated the fibrogenic actions of WT LMNC. LMNC from NKT cell deficient mice were deficient in fibrogenic factors, failing to activate collagen gene expression in HSC. Human NASH livers with advanced fibrosis contained more OPN and Hh protein than those with early fibrosis. Plasma levels of OPN mirrored hepatic OPN expression, and correlated with fibrosis severity. In conclusion, hepatic NKT cells drive production of OPN and Hh ligands that promote fibrogenesis during NASH. Associated increases in plasma levels of OPN may provide a biomarker of NASH-fibrosis.
ObjectiveChronic fibrosing liver injury is a major risk factor for hepatocarcinogenesis in humans. Mice with targeted deletion of Mdr2 (the murine ortholog of MDR3) develop chronic fibrosing liver injury. Hepatocellular carcinoma (HCC) emerges spontaneously in such mice by 50–60 weeks of age, providing a model of fibrosis-associated hepatocarcinogenesis. We used Mdr2−/− mice to investigate the hypothesis that activation of the hedgehog (Hh) signaling pathway promotes development of both liver fibrosis and HCC.MethodsHepatic injury and fibrosis, Hh pathway activation, and liver progenitor populations were compared in Mdr2−/− mice and age-matched wild type controls. A dose finding experiment with the Hh signaling antagonist GDC-0449 was performed to optimize Hh pathway inhibition. Mice were then treated with GDC-0449 or vehicle for 9 days, and effects on liver fibrosis and tumor burden were assessed by immunohistochemistry, qRT-PCR, Western blot, and magnetic resonance imaging.ResultsUnlike controls, Mdr2−/− mice consistently expressed Hh ligands and progressively accumulated Hh-responsive liver myofibroblasts and progenitors with age. Treatment of aged Mdr2-deficient mice with GDC-0449 significantly inhibited hepatic Hh activity, decreased liver myofibroblasts and progenitors, reduced liver fibrosis, promoted regression of intra-hepatic HCCs, and decreased the number of metastatic HCC without increasing mortality.ConclusionsHh pathway activation promotes liver fibrosis and hepatocarcinogenesis, and inhibiting Hh signaling safely reverses both processes even when fibrosis and HCC are advanced.
Objective Vascular remodeling during liver damage involves loss of healthy liver sinusoidal endothelial cell (LSEC) phenotype via capillarisation. Hedgehog (Hh) signaling regulates vascular development and increases during liver injury. Therefore, we examined its role in capillarisation. Design Primary LSEC were cultured for 5 days to induce capillarisation. Pharmacologic, antibody-mediated, and genetic approaches were used to manipulate Hh signaling. Effects on mRNA and protein expression of Hh-regulated genes and capillarisation markers were evaluated by qRT-PCR and immunoblot. Changes in LSEC function were assessed by migration and tube forming assay, and gain/loss of fenestrae was examined by electron microscopy. Mice with acute or chronic liver injury were treated with Hh inhibitors; effects on capillarisation were assessed by immunohistochemistry. Results Freshly isolated LSEC expressed Hh ligands, Hh receptors, and Hh ligand antagonist Hhip. Capillarisation was accompanied by repression of Hhip and increased expression of Hh-regulated genes. Treatment with Hh agonist further induced expression of Hh ligands and Hh-regulated genes, and up-regulated capillarisation-associated genes; whereas Hh signaling antagonist or Hh ligand neutralizing antibody each repressed expression of Hh target genes and capillarisation markers. LSEC isolated from SmoloxP/loxP transgenic mice that had been infected with adenovirus expressing Cre-recombinase to delete Smoothened showed over 75% knockdown of Smoothened. During culture, Smoothened-deficient LSEC had inhibited Hh signaling, less induction of capillarisation-associated genes, and retention of fenestrae. In mice with injured livers, inhibiting Hh signaling prevented capillarisation. Conclusions LSEC produce and respond to Hh ligands, and use Hh signaling to regulate complex phenotypic changes that occur during capillarisation.
Background Schistosomiasis mansoni is a major cause of portal fibrosis and portal hypertension. The Hedgehog pathway regulates fibrogenic repair in some types of liver injury. Aims Determine if Hedgehog-pathway activation occurs during fibrosis progression in schistosomiasis and to determine if macrophage-related mechanisms are involved. Methods Immunohistochemistry was used to characterize the cells that generate and respond to Hedgehog ligands in 28 liver biopsies from patients with different grades of schistosomiasis fibrosis staged by ultrasound. Cultured macrophages (RAW264.7 and primary rat Kupffer cells) and primary rat liver sinusoidal endothelial cells (LSEC) were treated with schistosome egg antigen (SEA) and evaluated by qRT-PCR. Inhibition of the Hedgehog-pathway was used to investigate its role in alternative activation of macrophages (M2) and vascular tube formation. Results Patients with schistosomiasis expressed more ligands (Shh and Ihh) and target genes (Patched and Gli2) than healthy individuals. Activated LSEC and myofibroblasts were Hedgehog-responsive (Gli2(+)) and accumulated in parallel with fibrosis stage (p<0.05). Double IHC for Ihh/CD68 showed that Ihh(+) cells were macrophages. In vitro studies demonstrated that SEA stimulated macrophages to express Ihh and Shh mRNA (p<0.05). Conditioned media from such macrophages induced luciferase production by Shh-LightII cells (p<0.001) and Hedgehog inhibitors blocked this effect (p<0.001). SEA-treated macrophages also up-regulated their own expression of M2 markers, and Hh-pathway inhibitors abrogated this response (p<0.01). Inhibition of the Hedgehog pathway in LSEC blocked SEA-induced migration and tube formation. Conclusion SEA stimulates liver macrophages to produce Hh-ligands, which promote alternative activation of macrophages, fibrogenesis, and vascular remodeling in schistosomiasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.