Though not present in the normal adult cornea, both hem- and lymph-angiogenesis can be induced in this tissue after an inflammatory, infectious, or traumatic insult. We previously showed that the chemokine CXCL10 plays a key role in eradicating invading Candida (C.) albicans in C57BL6 mouse corneas. However, even after the clearance of pathogens, infection-induced inflammation and angiogenesis continue to progress in the cornea. The aim of this study is define the role of CXCL10 as a major angiostatic factor in modulating cornea angiogenesis in B6 mouse corneas under pathogenic conditions. We showed that epithelial expression of CXCL10, driven by AAV9 vector, suppressed both infection- and inflammation-induced hem and lymph angiogenesis, whereas the neutralization of CXCL10 as well as its receptor CXCR3 greatly promoted these processes. The inhibitory effect of CXCL10 was unrelated to its antimicrobial activity, but through the suppression of the expression of many angiogenic factors, including VEGFa and c, and MMP-13 in vivo. Inhibition of MMP13 but not TIMPs, attenuated suture-induced neovascularization but had no effects on CXCL10 expression. Strikingly, topical application of CXCL10 post-C. albicans infection effectively blocked both hem- and lymph-angiogenesis and preserved the integrity of sensory nerves in the cornea. Taken together, CXCL10 has strong inhibitory effects on neovascularization, whereas MMP13 is required for neovascularization in C. albicans-infected corneas and the local application of CXCL10 or MMP13 inhibitors, alone or as adjuvant therapy, may target hem- and lymph-angiogenesis in the inflamed corneas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.