BACKGROUND: Paraquat is used widely as one of the bipyridine herbicides, which generates reactive oxygen species to cause cell death. With a growing number of paraquat-resistant weeds, the mechanism of paraquat-resistance in plants remains unclear. This research verified the functions of a previously confirmed putative paraquat-resistant gene, EiKCS, from paraquat-resistant goosegrass by genetic engineering in a single overexpressing line in rice.RESULTS: Overexpression of EiKCS improved paraquat resistance in transgenic rice (KCSox). Pre-applied (12 h) exogenous spermidine (1.5 mmol L −1 ), alleviated the injury of paraquat in rice. Paraquat induced injury in KCSox was 19.57%, which was lower than 32.22% injury it induced in wild-type (WT) rice. The paraquat-resistant mechanism was through the increased activity of antioxidant enzymes and the overproduction of endogenous polyamines. The spermine content in KCSox was more than 30 ∼g mL −1 , while that in WT rice was less than 5 ∼g mL −1 . Quantitative proteomics showed that ⊎-ketoacyl-coenzyme A (CoA) synthase ( 51.81 folds) encoded by the transgenic EiKCS gene promoted the synthesis of the proteins involved with the polyamine pathway. The synthesized putrescine was promoted by the arginine decarboxylase (ADC) pathway. The spermidine synthase I (1.10-fold) and three eceriferum cofactors (CERs) were responsive to the paraquat stress. We validated putrescine (C 18 H 20 N 2 O 2 ) spermidine (C 28 H 31 N 3 O 3 ), and spermine (C 38 H 42 N 4 O 4 ) in this study.CONCLUSION: EiKCS encoding ⊎-ketoacyl-CoA synthase from goosegrass has been shown as an ideal candidate gene for engineering genetically modified organism (GMO) crops, as its overexpression does not only bring paraquat-resistance, but also have potential benefits without decreasing yield and rice grain quality.
Paraquat is an important bipyridine herbicide by acting on the photosynthetic system of the plants and generating reactive oxygen species leading to cell death, whereas the mechanism of the paraquat resistance remains to be explored. In this study, a putative paraquat-resistant gene EiKCS from goosegrass (Eleusine indica L.) was isolated and overexpressed in a transgenic rice (Oryza sativa L.). This transgenic rice (KCSox) was treated by exogenous spermidine and paraquat and then was analyzed by qualitative and quantitative proteomics. Overexpressing of EiKCS enhanced paraquat tolerance in KCSox by the accumulation of endogenous polyamines whose dominant presences of polyamines benzoylation derivatizations in rice were C18H20N2O2, C28H31N3O3, and C38H42N4O4. The mechanism underlying the improving tolerance enhanced antioxidant capacity of ROS systems and light-harvesting in photosynthesis in KCSox rice leaves to reducing paraquat toxicity. The protein β-Ketoacyl-CoA Synthase (EiKCS) encoded by the EiKCS gene promoted the synthesis and metabolism of proteins of the polyamine pathway. Three cofactors CERs were identified and positively correlated with the function of EiKCS on very-long-chain fatty acids (VLCFAs) biosynthesis via promoting the polyamine pathway and inhibiting the links with the TCA pathway and fatty acid pathway to responding to the paraquat tolerance in the KCSox rice, which also caused the prolongation of the overproduction of spermine and a transient increase of intracellular malondialdehyde (MDA). These results expanded the polyamines pathway manipulated in cereals using genetic engineering to clarify the mechanism of paraquat-tolerance.One Sentence SummaryA putative paraquat-resistant EiKCS gene from the goosegrass overexpressing in the rice resulted in the accumulation of polyamines, especially the spermine, and promoted the proteins in polyamine pathways by its EiKCS protein under paraquat stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.