BackgroundParaquat is one of the most effective herbicides used to control weeds in agricultural management, while the pernicious weed goosegrass (Eleusine indica) has evolved resistance to herbicides, including paraquat. Polyamines provide high-level paraquat resistance in many plants. In the present study, we selected three polyamines, namely, putrescine, spermidine, and spermine, as putative genes to investigate their correlation with paraquat resistance by using paraquat-resistant (R) and paraquat-susceptible (S) goosegrass populations.ResultsThere was no significant difference in the putrescine nor spermine content between the R and S biotypes. However, 30 and 90 min after paraquat treatment, the spermidine concentration was 346.14-fold and 421.04-fold (P < 0.001) higher in the R biotype than in the S biotype, but the spermidine concentration was drastically reduced to a marginal level after 90 min. Since the transcript level of PqE was low while the spermidine concentration showed a transient increase, the PqE gene was likely involved in the synthesis of the paraquat resistance mechanism, regulation of polyamine content, and synthesis of spermidine and spermine. PqTS1, PqTS2, and PqTS3 encode transporter proteins involved in the regulation of paraquat concentration but showed different transcription patterns with synchronous changes in polyamine content.ConclusionEndogenous polyamines (especially spermidine) play a vital role in paraquat resistance in goosegrass. PqE, PqTS1, PqTS2, and PqTS3 were speculated on the relationship between polyamine metabolism and paraquat resistance. To validate the roles of PqE, PqTS1, PqTS2, and PqTS3 in polyamine transport systems, further research is needed.
A novel
and practical photoredox-catalyzed generation of sulfamyl
radicals followed by radical sulfonamidation of enol silyl ether has
been described. Diverse functionalized β-ketosulfonamides were
prepared in modest to excellent yields under mild and economic reaction
conditions through the present catalytic protocol. Furthermore, the
methodology developed provides an efficient and convenient approach
to the synthesis of the antiseizure drug Zonisamide.
BACKGROUND: Paraquat is used widely as one of the bipyridine herbicides, which generates reactive oxygen species to cause cell death. With a growing number of paraquat-resistant weeds, the mechanism of paraquat-resistance in plants remains unclear. This research verified the functions of a previously confirmed putative paraquat-resistant gene, EiKCS, from paraquat-resistant goosegrass by genetic engineering in a single overexpressing line in rice.RESULTS: Overexpression of EiKCS improved paraquat resistance in transgenic rice (KCSox). Pre-applied (12 h) exogenous spermidine (1.5 mmol L −1 ), alleviated the injury of paraquat in rice. Paraquat induced injury in KCSox was 19.57%, which was lower than 32.22% injury it induced in wild-type (WT) rice. The paraquat-resistant mechanism was through the increased activity of antioxidant enzymes and the overproduction of endogenous polyamines. The spermine content in KCSox was more than 30 ∼g mL −1 , while that in WT rice was less than 5 ∼g mL −1 . Quantitative proteomics showed that ⊎-ketoacyl-coenzyme A (CoA) synthase ( 51.81 folds) encoded by the transgenic EiKCS gene promoted the synthesis of the proteins involved with the polyamine pathway. The synthesized putrescine was promoted by the arginine decarboxylase (ADC) pathway. The spermidine synthase I (1.10-fold) and three eceriferum cofactors (CERs) were responsive to the paraquat stress. We validated putrescine (C 18 H 20 N 2 O 2 ) spermidine (C 28 H 31 N 3 O 3 ), and spermine (C 38 H 42 N 4 O 4 ) in this study.CONCLUSION: EiKCS encoding ⊎-ketoacyl-CoA synthase from goosegrass has been shown as an ideal candidate gene for engineering genetically modified organism (GMO) crops, as its overexpression does not only bring paraquat-resistance, but also have potential benefits without decreasing yield and rice grain quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.