The aim of the present study was to explore the effects of dietary non-fibrous carbohydrate to neutral detergent fiber (NFC/NDF) ratios on rumen development of calves, and to investigate the mechanisms by integrating of lncRNA and mRNA profiling. Forty-five weaned Charolais hybrid calves [body weight = 94.38 ± 2.50 kg; age = 70 ± 2.69 d] were randomly assigned to 1 of 3 treatment groups with different dietary NFC/NDF ratios: 1.10 (H group), 0.94 (M group) and 0.60 (L group), respectively. The ventral sac of the rumen was sampled for morphological observation and transcriptional sequencing. The average daily gain of calves in the high NFC/NDF ratio group was significantly higher than that in other groups (p < 0.05). Papillae width was largest in high NFC/NDF ratio group calves (p < 0.05). Identified differentially expressed genes that were significantly enriched in pathways closely related to rumen epithelial development included focal adhesion, Wingless-int signaling pathway, thyroid hormone signaling pathway, regulation of actin cytoskeleton and cGMP-PKG signaling pathway. The lncRNA-mRNA network included XLOC_068691 and MOAB, XLOC_023657 and DKK2, XLOC_064331 and PPP1R12A which we interpret to mean they have important regulatory roles in calve rumen development. These findings will serve as a theoretical basis for further analysis of the molecular genetic mechanism of dietary factors affecting rumen development in calves.
This study aimed to investigate the effects of fumarate and nitroglycerin on rumen fermentation, methane and hydrogen production, and microbiota. In vitro rumen fermentation was used in this study with four treatment groups: control (CON), fumarate (FA), nitroglycerin (NG) and fumarate plus nitroglycerin (FN). Real-time PCR and 16S rRNA gene sequencing were used to analyze microbiota. The results showed that nitroglycerin completely inhibited methane production and that this resulted in hydrogen accumulation. Fumarate decreased the hydrogen accumulation and improved the rumen fermentation parameters. Fumarate increased the concentration of propionate and microbial crude protein, and decreased the ratio of acetate to propionate in FN. Fumarate, nitroglycerin and their combination did not affect the abundance of bacteria, protozoa and anaerobic fungi, but altered archaea. The PCoA showed that the bacterial (Anosim, R = 0.747, p = 0.001) and archaeal communities (Anosim, R = 0.410, p = 0.005) were different among the four treatments. Compared with CON, fumarate restored Bacteroidetes, Firmicutes, Spirochaetae, Actinobacteria, Unclassified Ruminococcaceae, Streptococcus, Treponema and Bifidobacterium in relative abundance in FN, but did not affect Succinivibrio, Ruminobacter and archaeal taxa. The results indicated that fumarate alleviated the depressed rumen fermentation caused by the inhibition of methanogenesis by nitroglycerin. This may potentially provide an alternative way to use these chemicals to mitigate methane emission in ruminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.