In this letter, the support vector machine (SVM) regression approach is introduced to model the three-dimensional (3-D) high density microwave packaging structure. The SVM is based on the structural risk minimization principle, which leads to a good generalization ability. With a 3-D vertical interconnect used as an example, the SVM regression model is electromagnetically developed with a set of training data and testing data, which is produced by the electromagnetic simulation. Experimental results suggest that the developed model performs with a good predictive ability in analyzing the electrical performance.
Index Terms-Fuzz button, low temperature co-fired ceramic (LTCC), support vector machine (SVM), support vector regression (SVR), three-dimensional (3-D) vertical interconnect.
In this paper, we introduce a new method, support vector regression (SVR) method, to model millimeter wave transitions. SVR is based on the structural risk minimization (SRM) principle, which leads to good generalization ability for regression problem. The SVR model can be electromagnetically developed with a set of training data and testing data which produced by the electromagnetic simulation. Two Ka-band millimeter wave transitions, i.e., waveguide to microstrip transition and coaxial to waveguide adapter, are used as examples to validate the method. Experimental results show that the developed SVR models have a good predictive ability, and they are useful for interactive CAD of millimeter wave transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.