Angiotensin II-induced infiltration of monocytes in the heart is largely mediated by CXCL1-CXCR2 signalling which initiates and aggravates cardiac remodelling. Inhibition of CXCL1 and/or CXCR2 may represent new therapeutic targets for treating hypertensive heart diseases.
Angiotensin II (Ang II) and inflammation are associated with pathogenesis of atrial fibrillation (AF), but the underlying molecular mechanisms of these events remain unknown. The immunoproteasome has emerged as a critical regulator of inflammatory responses. Here, we investigated its role in Ang II-induced AF in immunosubunit PSMB10 (also known as β2i or LMP10) knockout (KO) mice. AF was induced by Ang II infusion (2000 ng/min per kg). PSMB10 expression and trypsin-like activity were increased in atrial tissues and serum from Ang II-treated mice or serum from patients with AF. Moreover, Ang II-infused wild-type (WT) mice had a higher AF and increased atrial fibrosis, reactive oxygen species production, and inflammation compared with saline-treated WT animals. These effects were attenuated in PSMB10 KO mice but were aggravated in recombinant adeno-associated virus serotype 9-PSMB10-treated mice. Administration of IKKβ-specific inhibitor IMD 0354 reduced Ang II-induced AF, reactive oxygen species production, inflammation, and NF-kB (nuclear factor-kB) activation. Mechanistically, Ang II infusion upregulated PSMB10 expression to promote PTEN (phosphatase and tensin homolog deleted on chromosome ten) degradation and AKT1 activation, which not only activated TGF-β-Smad2/3 signaling leading to cardiac fibrosis but also induced IKKβ activation and ubiquitin-mediated degradation of IkBα ultimately resulting in activation of NF-kB target genes (IL [interleukin]-1β, IL-6, NOX [NADPH oxidase] 2, NOX4, and CX43 [connexin 43]). Overall, our study identifies immunosubunit PSMB10 as a novel regulator that contributes to Ang II-induced AF and suggests that inhibition of PSMB10 may represent a potential therapeutic target for treating hypertensive AF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.