Angiotensin II-induced infiltration of monocytes in the heart is largely mediated by CXCL1-CXCR2 signalling which initiates and aggravates cardiac remodelling. Inhibition of CXCL1 and/or CXCR2 may represent new therapeutic targets for treating hypertensive heart diseases.
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and increases the risk of stroke, heart failure, and death. Ang II (angiotensin II) triggers AF, mainly through stimulation of the AT1R (Ang II type I receptor). The immunoproteasome is a highly efficient proteolytic machine derived from the constitutive proteasome, but the role it plays in regulating AT1R activation and triggering AF remains unknown. Here, we show that among the catalytic subunits, β5i (PSMB8) expression, and chymotrypsin-like activity were the most significantly upregulated in atrial tissue of Ang II–infused mice or serum from patients with AF. β5i KO (β5i knockout) in mice markedly attenuated Ang II-induced AF incidence, atrial fibrosis, inflammatory response, and oxidative stress compared with WT (wild type) animals, but injection with recombinant adeno-associated virus serotype 9–β5i increased these effects. Moreover, we found that ATRAP (AT1R-associated protein) was a target of β5i. Overexpression of ATRAP significantly attenuated Ang II-induced atrial remodeling and AF in recombinant adeno-associated virus serotype 9–β5i-injected mice. Mechanistically, Ang II upregulated β5i expression to promote ATRAP degradation, which resulted in activation of AT1R-mediated NF-κB signaling, increased NADPH oxidase activity, increased TGF (transforming growth factor)-β1/Smad signaling, and altered the expression of Kir2.1 and CX43 (connexin 43) in the atria, thereby affecting atrial remodeling and AF. In summary, this study identifies β5i as a negative regulator of ATRAP stability that contributes to AT1R activation and to AF, highlighting that targeting β5i activity may represent a potential therapeutic approach for the treatment of hypertensive AF.
Sustained cardiac hypertrophy is a major cause of heart failure (HF) and death. Recent studies have demonstrated that resveratrol (RES) exerts a protective role in hypertrophic diseases. However, the molecular mechanisms involved are not fully elucidated. In this study, cardiac hypertrophic remodeling in mice were established by pressure overload induced by transverse aortic constriction (TAC). Cardiac function was evaluated by echocardiography and invasive pressure-volume analysis. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein and gene expressions of signaling mediators and hypertrophic markers were examined. Our results showed that administration of RES significantly suppressed pressure overload-induced cardiac hypertrophy, fibrosis and apoptosis and improved in vivo heart function in mice. RES also reversed pre-established hypertrophy and restoring contractile dysfunction induced by chronic pressure overload. Moreover, RES treatment blocked TAC-induced increase of immunoproteasome activity and catalytic subunit expression (β1i, β2i and β5i), which inhibited PTEN degradation thereby leading to inactivation of AKT/mTOR and activation of AMPK signals. Further, blocking PTEN by the specific inhibitor VO-Ohpic significantly attenuated RES inhibitory effect on cardiomyocyte hypertrophy in vivo and in vitro. Taken together, our data suggest that RES is a novel inhibitor of immunoproteasome activity, and may represent a promising therapeutic agent for the treatment of hypertrophic diseases.
Inflammation has been implicated in a variety of retinal diseases. The immunoproteasome plays a critical role in controlling inflammatory responses, but whether activation of immunoproteasome contributes to angiotensin II (Ang II)-induced retinopathy remains unclear. Hypertensive retinopathy (HR) was induced by infusion of Ang II (3000 ng/kg/min) in wild-type (WT) and immunoproteasome subunit LMP10 knockout (KO) mice for 3 weeks. Changes in retinal morphology, vascular permeability, superoxide production and inflammation were examined by pathological staining. Our results showed that immunoproteasome subunit LMP10 expression and its trypsin-like activity were significantly upregulated in the retinas and serum of Ang II-infused mice and in the serum from patients with hypertensive retinopathy. Moreover, Ang II-infused WT mice showed an increase in the central retinal thickness, vascular permeability, reactive oxygen species (ROS) production and inflammation compared with saline controls, and these effects were significantly attenuated in LMP10 KO mice, but were aggravated in mice intravitreally injected with rAAV2-LMP10. Interestingly, administration of IKKβ specific inhibitor IMD-0354 remarkably blocked an Ang II-induced increase in vascular permeability, oxidative stress and inflammation during retinopathy. Mechanistically, Ang II-induced upregulation of LMP10 promoted PTEN degradation and activation of AKT/IKK signaling, which induced IkBα phosphorylation and subsequent degradation ultimately leading to activation of NF-kB target genes in retinopathy. Therefore, this study provided novel evidence demonstrating that LMP10 is a positive regulator of NF-kB signaling, which contributes to Ang II-induced retinopathy. Strategies for inhibiting LMP10 or IKKβ activity in the eye could serve as a novel therapeutic target for treating hypertensive retinopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.