Magnetic resonance (MR) imaging is currently the modality of choice for detecting meniscal injuries and planning subsequent treatment. A thorough understanding of the imaging protocols, normal meniscal anatomy, surrounding anatomic structures, and anatomic variants and pitfalls is critical to ensure diagnostic accuracy and prevent unnecessary surgery. High-spatial-resolution imaging of the meniscus can be performed using fast spin-echo and three-dimensional MR imaging sequences. Normal anatomic structures that can mimic a tear include the meniscal ligament, meniscofemoral ligaments, popliteomeniscal fascicles, and meniscomeniscal ligament. Anatomic variants and pitfalls that can mimic a tear include discoid meniscus, meniscal flounce, a meniscal ossicle, and chondrocalcinosis. When a meniscal tear is identified, accurate description and classification of the tear pattern can guide the referring clinician in patient education and surgical planning. For example, longitudinal tears are often amenable to repair, whereas horizontal and radial tears may require partial meniscectomy. Tear patterns include horizontal, longitudinal, radial, root, complex, displaced, and bucket-handle tears. Occasionally, meniscal tears can be difficult to detect at imaging; however, secondary indirect signs, such as a parameniscal cyst, meniscal extrusion, or linear subchondral bone marrow edema, should increase the radiologist's suspicion for an underlying tear. Awareness of common diagnostic errors can ensure accurate diagnosis of meniscal tears. Online supplemental material is available for this article.
The bone marrow is one of the largest organs in the body and is visible in every magnetic resonance (MR) imaging study. It is composed of a combination of hematopoietic red marrow and fatty yellow marrow, and its composition changes throughout life in response to normal maturation (red to yellow conversion) and stress (yellow to red reconversion). MR imaging is highly sensitive for detection of altered marrow signal intensity, and the T1-weighted spin-echo sequence provides the most robust contrast between yellow marrow and disease. Heterogeneous red marrow and red marrow hyperplasia can mimic marrow disease, but should be distinguished from neoplastic replacement (leukemia, lymphoma, primary bone sarcomas, hematogenous metastases) and expected posttreatment changes (radiation therapy, chemotherapy, colony-stimulating factor, bone marrow transplant). Nonneoplastic edema-like processes can also alter marrow signal intensity, including trauma, infection, inflammation (chronic recurrent multifocal osteomyelitis, juvenile inflammatory arthritis), altered biomechanics, and chronic regional pain syndrome. Unfortunately, MR imaging findings are often nonspecific and overlap among many of these vastly different causes. Therefore, a definitive diagnosis is reliant on a combination of imaging findings, clinical evaluation, laboratory assessment, and occasionally tissue analysis. RSNA, 2016.
AI improves radiologist's bone age assessment by increasing accuracy and decreasing variability and RMSE. The utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts. This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve performance.
The growth plates, or physes, are visible on virtually all images obtained in skeletally immature children. The proper function of these growth plates depends on an intricate balance between chondrocyte proliferation, which requires nourishment from the epiphyseal vessels, and chondrocyte death, which requires the integrity of the metaphyseal vessels. Therefore, injury to the growth plate (ie, direct insult) or vascular compromise on either side of the growth plate (ie, indirect insult) can cause growth plate dysfunction. Direct growth plate insults occur most commonly with Salter-Harris fractures, and injuries that allow the transphyseal communication of vessels are at a higher risk for subsequent transphyseal bone bridge formation. Indirect insults lead to different sequelae that are based on whether the epiphyseal blood supply or metaphyseal blood supply is compromised. Epiphyseal osteonecrosis can result in slowed longitudinal bone growth, with possible growth plate closure, and is often accompanied by an abnormal secondary ossification center. In contrast, the disruption of metaphyseal blood supply alters endochondral ossification and allows the persistence of chondrocytes within the metaphysis, which appear as focal or diffuse growth plate widening. Imaging remains critical for detecting acute injuries and identifying subsequent growth disturbances. Depending on the imaging findings and patient factors, these growth disturbances may be amenable to conservative or surgical treatment. Therefore, an understanding of the anatomy and physiologic features of the normal growth plate and the associated pathophysiologic conditions can increase diagnostic accuracy, enable radiologists to anticipate future growth disturbances, and ensure optimal imaging, with the ultimate goal of timely and appropriate intervention. RSNA, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.