With the rapid development of information technology and market economy, global e-commerce platform develops rapidly. Recently, online reviews are widely available on e-commerce platforms to express customers’ experience of products. When ranking alternative products based on online reviews, how to make full use of the information in online reviews to represent the sentiment analysis results of online reviews is an important prerequisite for decision analysis. To this end, we propose a method for measuring the time utility and support utility of online reviews. Then a method for representing the sentiment analysis results of online reviews in the form of linguistic distribution is proposed. In addition, in view of the attributes and their weights being unknown, we propose a method for extracting product attributes from online reviews by using the Term Frequency-Inverse Document Frequency (TF-IDF) algorithm; and the objective weights of attributes are determined through the Criteria Importance through Intercriteria Correlation (CRITIC) method. Additionally, in order to highlight the differences between the alternatives, the roulette wheel selection algorithm is first used to randomly select product attributes. Then the alternative products can be ranked by the extended Multi-Attributive Border Approximation area Comparison (MABAC) method with mixed information. Finally, we illustrate the applicability of the proposed method through a case study of selecting a 5G mobile phone and simulation experiment.
PurposeThis study aims to propose a consensus model that considers dynamic trust and the hesitation degree of the expert's evaluation, and the model can provide personalized adjustment advice to inconsistent experts.Design/methodology/approachThe trust degree between experts will be affected by the decision-making environment or the behavior of other experts. Therefore, based on the psychological “similarity-attraction paradigm”, an adjustment method for the trust degree between experts is proposed. In addition, we proposed a method to measure the hesitation degree of the expert's evaluation under the multi-granular probabilistic linguistic environment. Based on the hesitation degree of evaluation and trust degree, a method for determining the importance degree of experts is proposed. In the feedback mechanism, we presented a personalized adjustment mechanism that can provide the personalized adjustment advice for inconsistent experts. The personalized adjustment advice is accepted readily by inconsistent experts and ensures that the collective consensus degree will increase after the adjustment.FindingsThe results show that the consensus model in this paper can solve the social network group decision-making problem, in which the trust degree among experts is dynamic changing. An illustrative example demonstrates the feasibility of the proposed model in this paper. Simulation experiments have confirmed the effectiveness of the model in promoting consensus.Originality/valueThe authors presented a novel dynamic trust consensus model based on the expert's hesitation degree and a personalized adjustment mechanism under the multi-granular probabilistic linguistic environment. The model can solve a variety of social network group decision-making problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.