Enzymes as catalysts in organic syntheses can provide high regio‐ and stereo‐selectivity, which is often not possible with chemical catalysts. Biocatalysis with iron heme enzymes has proven efficient when the enzyme is sequestered in thin films. An added feature is improved stability. For example, peroxidases chemically crosslinked in poly‐lysine in films on silica nanoparticles were stable for 9 hrs or more at 90 °C, and were used for biocatalysis up to 90 °C. We show here for a series of para‐substituted phenols, single nitro‐phenol products can be selectively synthesized using biocatalytic magnetic beads coated with horseradish peroxidase (HRP) crosslinked in polylysine films. Nitrophenols moieties are important as synthetic intermediates and in drugs. For a series of para‐substituted phenols, biocatalytic nitration gave average turnover numbers 1.8‐fold larger at 75 °C than at 25 °C. For phenols giving <50 % conversion after 1 hr at 25 °C, twice the nitration yield was achieved in 1 hr at 75 °C. Results indicate that this approach should be valuable as a general tool for biocatalytic chemical synthesis.
We report hydrophobicity-enhanced reactivity of Cu2+ ions as an ester hydrolase. Using a dipicolyamine (DPA) containing reversible addition-fragmentation chain transfer agent, the synthetic sequence, either hydrophobic or hydrophilic first...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.