Electrical impedance spectroscopy (EIS) measurements on cells is a proven method to assess stem cell proliferation and differentiation. Cell regenerative medicine (CRM) is an emerging field where the need to develop and deploy stem cell assessment techniques is paramount as experimental treatments reach pre-clinical and clinical stages. However, EIS measurements on cells is a method requiring extensive post-processing and analysis. As a contribution to address this concern, we developed three machine learning models for three different stem cell lines able to classify the measured data as proliferation or differentiation laying the stone for future studies on using machine learning to profile EIS measurements on stem cells spectra.
Due to the possibilities in miniaturization and wearability, photoplethysmography (PPG) has recently gained a large interest not only for heart rate measurement, but also for estimating heart rate variability, which is derived from ECG by convention. The agreement between PPG and ECG-based HRV has been assessed in several studies, but the feasibility of PPG-based HRV estimation is still largely unknown for many conditions. In this study, we assess the feasibility of HRV estimation based on finger PPG during rest, mild physical exercise and mild mental stress. In addition, we compare different variants of signal processing methods including selection of fiducial point and outlier correction. Based on five minutes synchronous recordings of PPG and ECG from 15 healthy participants during each of these three conditions, the PPG-based HRV estimation was assessed for the SDNN and RMSSD parameters, calculated based on two different fiducial points (foot point and maximum slope), with and without outlier correction. The results show that HRV estimation based on finger PPG is feasible during rest and mild mental stress, but can give large errors during mild physical exercise. A good estimation is very dependent on outlier correction and fiducial point selection, and SDNN seems to be a more robust parameter compared to RMSSD for PPG-based HRV estimation.
Intestinal ischemia is a serious condition where the surgeon often has to make important but difficult decisions regarding resections and resection margins. Previous studies have shown that 3 h (hours) of warm full ischemia of the small bowel followed by reperfusion appears to be the upper limit for viability in the porcine mesenteric ischemia model. However, the critical transition between 3 to 4 h of ischemic injury can be nearly impossible to distinguish intraoperatively based on standard clinical methods. In this study, permittivity data from porcine intestine was used to analyze the characteristics of various degrees of ischemia/reperfusion injury. Our results show that dielectric relaxation spectroscopy can be used to assess intestinal viability. The dielectric constant and conductivity showed clear differences between healthy, ischemic and reperfused intestinal segments. This indicates that dielectric parameters can be used to characterize different intestinal conditions. In addition, machine learning models were employed to classify viable and non-viable segments based on frequency dependent dielectric properties of the intestinal tissue, providing a method for fast and accurate intraoperative surgical decision-making. An average classification accuracy of 98.7% was obtained using only permittivity data measured during ischemia, and 96.2% was obtained with data measured during reperfusion. The proposed approach allows the surgeon to get accurate evaluation from the trained machine learning model by performing one single measurement on an intestinal segment where the viability state is questionable.
This study was performed to test bioimpedance as a tool to detect the effect of different thawing methods on meat quality to aid in the eventual creation of an electric impedance-based food quality monitoring system. The electric impedance was measured for fresh pork, thawed pork, and during quick and slow thawing. A clear difference was observed between fresh and thawed samples for both impedance parameters. Impedance was different between the fresh and the frozen-thawed samples, but there were no impedance differences between frozen-thawed samples and the ones that were frozen-thawed and then stored at +3 °C for an additional 16 h after thawing. The phase angle was also different between fresh and the frozen-thawed samples. At high frequency, there were small, but clear phase angle differences between frozen-thawed samples and the samples that were frozen-thawed and subsequently stored for more than 16 h at +3 °C. Furthermore, the deep learning model LSTM-RNN (long short-term memory recurrent neural network) was found to be a promising way to classify the different methods of thawing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.