The semen quality among young Chinese men has declined over a period of 15 years, especially in terms of sperm concentration, total sperm count, sperm progressive motility, and normal morphology.
In this paper, using a simple method, 17 isostructural polyoxotitanates (POTs) were synthesized, including the pristine [Ti12O16(O(i)Pr)16], the monodefected [Ti11O13(O(i)Pr)18], and the heterometal-doped [Ti11O14(O(i)Pr)17(ML)] (M = Mg, Ca, Zn, Cd, Co, or Ni; L = Cl, Br, I, or NO3). The electronic structures of these POTs were determined by UV-vis spectroscopy and DFT calculations. Upon UV irradiation of the POTs, electron spin resonance showed the formation of Ti(III) under anaerobic conditions and superoxide (O2(•-)) in the presence of O2. The photoactivities of the POTs were then probed with Ti(III) production and short-circuit photocurrent experiments. The photophysical processes were studied using steady-state and transient photoluminescence. The results show that within the very similar structures, the deexcitation processes of the photoexcited POTs can be greatly affected by the dopants, which result in enhanced or decreased photoactivities. Co and Ni doping enhances the absorption of the visible light accompanied by serious loss of UV photoactivities. On the other hand, a Ti vacancy (in [Ti11O13(O(i)Pr)18]) does not reduce the band gap of a POT but improves the UV photoactivities by serving as surface reaction site. The POTs were then used as molecular models of titanium oxide nanoparticles to understand some important issues relevant to doped titanate, i.e., coordination environment of the dopant metal, electronic structure, photoactivities, and photophysical processes. Our present findings suggest that for solar energy harvesting applications of titanium oxides like photocatalysis and solar cells substitution of titanium atoms by transition metal ions (like Co and Ni) to extend the absorption edges may not be an efficient way, while loading of Ti vacancies is very effective.
During solvothermal alcoholysis of a mixture of TiI4 and Ti(O(i)Pr)4, a {I@Ti22} cage cluster encapsulating an OH and iodide guests is crystallized. The {I@Ti22} host-guest cluster surface is postfunctionalizable with catecholate and carboxylate ligands. The synthetic details, structural characterization, spectroscopic properties of the obtained cages clusters are provided. The present study provides candidates for modeling ligand exchange and electron-hole transfer at the titanate nanoparticle surface, and meanwhile offers new opportunities for understanding the TiO2 nanocrystalline formation in solvothermal processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.