We present herein a nickel-catalyzed dicarbofunctionalization of alkenes using readily available organoboronic acids and organic halides in a three-component fashion.
We report the convergent reaction pathways between [RhH(PPh 3) 4 ] and POP ketone (1) and alcohol (2) ligands that terminate in the formation of an α-hydroxylalkyl rhodium(I) complex (3), representing two halves of a formal reduction/oxidation pathway between 1 and 2. In the case of hydride transfer to 1, the formation of the α-hydroxylalkyl rhodium(I) complex (3) proceeds via a rare hydrido(η 2carbonyl) complex (4). C−H activation in 2 at the proligand's central methine position, rather than O−H activation of the hydroxy motif, followed by loss of dihydrogen also generates the α-hydroxylalkyl rhodium(I) complex (3). The validity of the postulated reaction pathways is probed with DFT calculations. The observed reactivity supports α-hydroxylalkyl complexes as competent intermediates in ketone hydrogenation catalyzed by rhodium hydrides and suggest that ligands 1 and 2 may be "noninnocent" coligands in reported hydrogenation catalyst systems in which they are utilized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.