Due to the multiple benefits on energy, well-being, comfort, and the economy, the utilization of daylight remains an imperative topic of architectural design. With the remarkable ability of drawing and increasing daylight deep into the core of buildings, atriums with a large proportion of glazing have become one of the most preferred design forms. The concomitant and unexpected visual discomfort in modern buildings, however, has drawn increasing concerns. Therefore, this study investigated the relation between glazing proportion and daylight performance, as well as the impact of building height and atrium types on daylight performance in atrium buildings by using an annual dynamic simulation method and metrics. It was found that extending glazing proportion had prominent effectiveness in the enhancement of daylighting; building height had a negative influence; round and square types of buildings performed much better than rectangular ones. Moreover, to inform a practical design, we analyzed the link between increasing daylight and visual comfort from the perspective of balancing them, and then proposed a design guide for atrium roof-glazing sizing.
Folic acid (FA) has shown great potential in the fields of targeted drug delivery and disease diagnosis due to its highly tumor-targeting nature, biocompatibility, and low cost. However, FA is generally introduced in targeted drug delivery systems through macromolecular linkage via complex synthetic processes, resulting in lower yields and high costs. In this work, we report a general protocol for synthesizing thiolated folate derivatives. The small molecule thiolated folate (TFa) was first synthesized with a purity higher than 98.20%. First, S-S-containing diol was synthesized with a purity higher than 99.44 through a newly developed green oxidation protocol, which was carried out in water with no catalyst. Then, folic acid was modified using the diol through esterification, and TFa was finally synthesized by breaking the disulfide bond. Further, the synthesized TFa was utilized to modify silver nanoparticles. The results showed that TFa could be easily bonded to metal particles. The protocol could be extended to the synthesis of a series of thiolated derivatives of folate, such as mercaptohexyl folate, mercaptoundecyl folate, etc., which would greatly benefit the biological applications of FA.
As one of the most traditional and ubiquitous elements in architecture, atrium design has remained an imperative topic. With the growing concerns of energy conversation, carbon emission, comfort, and well-being recently, atrium design optimization to match the new crises and demands becomes a big challenge. This study investigated the impact of atrium shapes and building heights to daylighting performance. It was found that round atrium performs the best, next is square, and the worst one is the rectangle. And the higher the buildings are, the worse the daylight performance is. To further guide design work, generic atrium design criteria from a view of balancing daylight performance and visual comfort was proposed. The more reliable and valid annual dynamic simulation methods and climate-based daylighting modeling metrics are adopted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.