Nano-modification of polyester has become a research hotspot due to the growing demand for high-performance polyester. As a functional carrier, silica nanoparticles show large potential in improving crystalline properties, enhancing strength of polyester, and fabricating fluorescent polyester. Herein, we briefly traced the latest literature on synthesis of silica modifiers and the resultant polyester nanocomposites and presented a review. Firstly, we investigated synthesis approaches of silica nanoparticles for modifying polyester including sol-gel and reverse microemulsion technology, and their surface modification methods such as grafting silane coupling agent or polymer. Then, we summarized processing technics of silica-polyester nanocomposites, like physical blending, sol-gel processes, and in situ polymerization. Finally, we explored the application of silica nanoparticles in improving crystalline, mechanical, and fluorescent properties of composite materials. We hope the work provides a guideline for the readers working in the fields of silica nanoparticles as well as modifying polyester.
Folic acid (FA) has shown great potential in the fields of targeted drug delivery and disease diagnosis due to its highly tumor-targeting nature, biocompatibility, and low cost. However, FA is generally introduced in targeted drug delivery systems through macromolecular linkage via complex synthetic processes, resulting in lower yields and high costs. In this work, we report a general protocol for synthesizing thiolated folate derivatives. The small molecule thiolated folate (TFa) was first synthesized with a purity higher than 98.20%. First, S-S-containing diol was synthesized with a purity higher than 99.44 through a newly developed green oxidation protocol, which was carried out in water with no catalyst. Then, folic acid was modified using the diol through esterification, and TFa was finally synthesized by breaking the disulfide bond. Further, the synthesized TFa was utilized to modify silver nanoparticles. The results showed that TFa could be easily bonded to metal particles. The protocol could be extended to the synthesis of a series of thiolated derivatives of folate, such as mercaptohexyl folate, mercaptoundecyl folate, etc., which would greatly benefit the biological applications of FA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.