In order to increase the energy content of lithium ion batteries (LIBs), researchers worldwide focus on high specific energy (Wh/kg) and energy density (Wh/L) anode and cathode materials. However, most of the attention is primarily paid to the specific gravimetric and/or volumetric capacities of these materials, while other key parameters are often neglected. For practical applications, in particular for large size battery cells, the Coulombic efficiency (CE), voltage efficiency (VE), and energy efficiency (EE) have to be considered, which we point out in this work by comparing numerous LIB active materials. For all presented active materials, energy inefficiency is mainly caused by a voltage inefficiency, which in turn is affected by the voltage hysteresis between the charge and discharge curves. Hence, this study could show that materials with larger voltage hysteresis such as the ZnFe 2 O 4 (ZFO) anode or the Lirich cathode material exhibit also a lower VE and EE than for instance graphite and LiNi 0.5 Mn 1.5 O 4 . Furthermore, from the accumulated EE losses the resulting "extra energy costs" are calculated based on industry and domestic electricity costs in Germany, in Japan and in the U.S.A. In particular, in countries with higher electricity costs such as Germany, the accumulated extra energy, which is necessary to compensate the energy inefficiency while retaining a certain energy level in the electrode material, has a stronger impact on the extra energy costs and thus on the total cost of ownership of the battery cell system.
Structural changes in Li 2 MnO 3 cathode material for rechargeable Li-ion batteries were investigated during the 1 st and 33 rd cycles by X-ray absorption spectroscopy. It is found that both the participation of oxygen anions in redox processes and Li + -H + exchange play an important role in the electrochemistry of Li 2 MnO 3 . During activation, oxygen removal from the material along with Li gives rise to the formation of a layered MnO 2 -type structure, while the presence of protons in the interslab region, as * To whom correspondence should be addressed † Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-
An evolution panorama of morphology and surface orientation of high-voltage spinel LiNi(0.5)Mn(1.5)O4 cathode materials synthesized by the combination of the microwave-assisted hydrothermal technique and a postcalcination process is presented. Nanoparticles, octahedral and truncated octahedral particles with different preferential growth of surface orientations are obtained. The structures of different materials are studied by X-ray diffraction (XRD), Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), and transmission electron microscopy (TEM). The influence of various morphologies (including surface orientations and particle size) on kinetic parameters, such as electronic conductivity and Li(+) diffusion coefficients, are investigated as well. Moreover, electrochemical measurements indicate that the morphological differences result in divergent rate capabilities and cycling performances. They reveal that appropriate surface-tailoring can satisfy simultaneously the compatibility of power capability and long cycle life. The morphology design for optimizing Li(+) transport and interfacial stability is very important for high-voltage spinel material. Overall, the crystal chemistry, kinetics and electrochemical performance of the present study on various morphologies of LiNi(0.5)Mn(1.5)O4 spinel materials have implications for understanding the complex impacts of electrode interface and electrolyte and rational design of rechargeable electrode materials for lithium-ion batteries. The outstanding performance of our truncated octahedral LiNi(0.5)Mn(1.5)O4 materials makes them promising as cathode materials to develop long-life, high energy and high power lithium-ion batteries.
Layered lithium‐ and manganese‐rich oxides (LMROs), described as xLi2MnO3·(1–x)LiMO2 or Li1+yM1–yO2 (M = Mn, Ni, Co, etc., 0 < x <1, 0 < y ≤ 0.33), have attracted much attention as cathode materials for lithium ion batteries in recent years. They exhibit very promising capacities, up to above 300 mA h g−1, due to transition metal redox reactions and unconventional oxygen anion redox reaction. However, they suffer from structural degradation and severe voltage fade (i.e., decreasing energy storage) upon cycling, which are plaguing their practical application. Thus, this review will aim to describe the pristine structure, high‐capacity mechanisms and structure evolutions of LMROs. Also, recent progress associated with understanding and mitigating the voltage decay of LMROs will be discussed. Several approaches to solve this problem, such as adjusting cycling voltage window and chemical composition, optimizing synthesis strategy, controlling morphology, doping, surface modification, constructing core‐shell and layered‐spinel hetero structures, are described in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.