In this paper, a multi-objective hierarchical prediction energy management strategy is proposed to achieve optimal fuel cell life economy and energy consumption economy for a range extended fuel cell vehicle.First, a global state of charge rapid planning method is proposed based only on the expected driving distance.Then, the vehicle speed information in the prediction horizon is estimated by a vehicle speed prediction module based on the back propagation neural network. According to the predicted speed and state of charge reference, a novel fusion algorithm that combines the direct configuration method and sequential quadratic programming is proposed to achieve optimal fuel cell life economy and energy consumption economy in the prediction horizon. Simulation results validate that the proposed strategy can effectively reduce the operating costs compared with that of the charge depletion-charge sustaining strategy and the equivalent consumption minimization strategy, thereby proving the feasibility of the proposed strategy.
Heating, Ventilation, and Air Conditioning (HVAC) are extremely energy-consuming, accounting for 40% of total building energy consumption. It is crucial to design some energyefficient building thermal comfort control strategy which can reduce the energy consumption of the HVAC while maintaining the comfort of the occupants. However, implementing such a strategy is challenging, because the changes of the thermal states in a building environment are influenced by various factors. The relationships among these influencing factors are hard to model and are always different in different building environments. To address this challenge, we propose a deep reinforcement learning based framework, DeepComfort, for thermal comfort control in buildings. We formulate the thermal comfort control as a cost-minimization problem by jointly considering the energy consumption of the HVAC and the occupants' thermal comfort. We first design a deep Feedforward Neural Network (FNN) based approach for predicting the occupants' thermal comfort, and then propose a Deep Deterministic Policy Gradients (DDPG) based approach for learning the optimal thermal comfort control policy. We implement a building thermal comfort control simulation environment and evaluate the performance under various settings. The experimental results show that our approaches can improve the performance of thermal comfort prediction by 14.5% and reduce the energy consumption of HVAC by 4.31% while improving the occupants' thermal comfort by 13.6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.