e t e r m i n es Ci t iz e n r u s t : E va l ua t i n g t h e I m pa c t of Ca m paig n s H i g h l igh t i n g Gove r n m e nt R e f o r m S
AbstractChina initiated a critical value-added tax reform in 2004. Completed in 2009, it introduced permanent tax credit for rms' investment in xed assets. We use a quasi-experimental design and a unique rm-level dataset covering all sizes of rms across a broad range of sectors and regions between 2005 and 2012, to test whether the reform promoted rms' investment and productivity. We estimate that on average, the reform raised investment and productivity of the treated rms relative to the control rms by 8.8 percent and 3.7 percent, respectively. We also show that the positive eects tend to be strengthened for rms with nancial constraints.
Classically chaotic systems possess a proliferation of periodic orbits. This phenomenon was observed in a quantum system through measurements of the absorption spectrum of a hydrogen atom in a magnetic field. This paper gives a theoretical interpretation of the bifurcations of periodic or closed orbits of electrons in atoms in magnetic fields. We ask how new periodic orbits can be created out of existing ones or "out of nowhere" as the energy changes. Hamiltonian bifurcation theory provides the answer: it asserts the existence of just five typical types of bifurcation in conservative systems with two degrees of freedom. We show an example of each type. Every case we have examined falls into one of the patterns described by the theory.
Glioma is a lethal, malignant intracranial tumor that becomes progressively common. It has been shown that long noncoding RNAs (lncRNAs) serve important roles in numerous diseases such as gliomas. lncRNAs can regulate the expression of targeted genes through various mechanisms. To identify a novel lncRNA that may be critical in glioma, the present study downloaded the RNA expression profiles of 171 glioma tissues and 5 normal tissues from The Cancer Genome Atlas (TCGA) database using the TCGAbiolinks package in R. Then, lncRNAs in the downloaded TCGA data were identified using the HUGO Gene Nomenclature Committee (HGNC). Based on the fragments per kilobase million value, differential expression analysis was conducted using the limma package in R. In addition, receiver operating characteristic (ROC) analysis was performed, and the area under the curve (AUC) was evaluated using the ROCR package in R. A total of 178 lncRNAs corresponding to differentially expressed genes with an AUC >0.85 were selected. Upon identifying the differential lncRNAs, ceRNA networks were constructed with these differential lncRNAs using the starbase database. From these networks, the top 10% hub genes were selected. In addition, the present study randomly selected 4 lncRNAs for quantitative polymerase chain reaction validation in tissue samples. The results revealed that lncRNA ASB16-AS1 exhibited significantly differential expression in tissue samples and was significantly associated with tumor staging and grading. Furthermore, the proliferation, invasion, and migration of U87MG and U251 glioblastoma stem-like cells (U87GS, U251GS) were significantly inhibited upon inhibition of ASB16-AS1, and the expression of key proteins in the EMT signaling pathway was affected by knocking down ASB16-AS1. Overall, the present study revealed that lncRNA ASB16-AS1 improves the proliferation, migration, and invasion of glioma cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.