Magnetic resonance imaging-guided FUS can disrupt the BBB reversibly and deliver IV administered MTX to targeted brain locations; it brings about a greater than 10-fold increase in the drug level and is much more effective (approximately 3.7-fold) than drug delivery through the ICA without sonication. This may facilitate the development of improved treatment methods for central nervous system disorders.
Triple‐negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer with negativity for oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor (HER2). Non‐coding RNAs (ncRNAs) make up most of the transcriptome and are widely present in eukaryotic cells. In recent years, emerging evidence suggests that ncRNAs, mainly microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs), play prominent roles in the tumorigenesis and development of TNBC, but the functions of most ncRNAs have not been fully described. In this review, we systematically elucidate the general characteristics and biogenesis of miRNAs, lncRNAs and circRNAs, discuss the emerging functions of these ncRNAs in TNBC and present future perspectives in clinical practice.
Hypoxia is a classic characteristic of the tumor microenvironment with a significant impact on cancer progression and therapeutic response. Hypoxia-inducible factor-1 alpha (HIF-1α), the most important transcriptional regulator in the response to hypoxia, has been demonstrated to significantly modulate hypoxic gene expression and signaling transduction networks. In past few decades, growing numbers of studies have revealed the importance of noncoding RNAs (ncRNAs) in hypoxic tumor regions. These hypoxia-responsive ncRNAs (HRNs) play pivotal roles in regulating hypoxic gene expression at the transcriptional, posttranscriptional, translational and posttranslational levels. In addition, as a significant gene expression regulator, ncRNAs exhibit promising roles in regulating HIF-1α expression at multiple levels. In this review, we briefly elucidate the reciprocal regulation between HIF-1α and ncRNAs, as well as their effect on cancer cell behaviors. We also try to summarize the complex feedback loop existing between these two components. Moreover, we evaluated the biomarker potential of HRNs for the diagnosis and prognosis of cancer, as well as the potential clinical utility of shared regulatory mechanisms between HIF-1α and ncRNAs in cancer treatment, providing novel insights into tumorigenicity, which may lead to innovative clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.