IntroductionCurrently, the design of extracellular matrix (ECM) with nanoscale properties in bone tissue engineering is challenging. For bone tissue engineering, the ECM must have certain properties such as being nontoxic, highly porous, and should not cause foreign body reactions.Materials and methodsIn this study, the hybrid scaffold based on polyvinyl alcohol (PVA) blended with metallocene polyethylene (mPE) and plectranthus amboinicus (PA) was fabricated for bone tissue engineering via electrospinning. The fabricated hybrid nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform and infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), contact angle measurement, and atomic force microscopy (AFM). Furthermore, activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolytic assays were used to investigate the blood compatibility of the prepared hybrid nanocomposites.ResultsThe prepared hybrid nanocomposites showed reduced fiber diameter (238±45 nm) and also increased porosity (87%) with decreased pore diameter (340±86 nm) compared with pure PVA. The interactions between PVA, mPE, and PA were identified by the formation of the additional peaks as revealed in FTIR. Furthermore, the prepared hybrid nanocomposites showed a decreased contact angle of 51°±1.32° indicating a hydrophilic nature and exhibited lower thermal stability compared to pristine PVA. Moreover, the mechanical results revealed that the electrospun scaffold showed an improved tensile strength of 3.55±0.29 MPa compared with the pristine PVA (1.8±0.52 MPa). The prepared hybrid nanocomposites showed delayed blood clotting as noted in APTT and PT assays indicating better blood compatibility. Moreover, the hemolysis assay revealed that the hybrid nanocomposites exhibited a low hemolytic index of 0.6% compared with pure PVA, which was 1.6% suggesting the safety of the developed nanocomposite to red blood cells (RBCs).ConclusionThe prepared nanocomposites exhibited better physico-chemical properties, sufficient porosity, mechanical strength, and blood compatibility, which favors it as a valuable candidate in bone tissue engineering for repairing the bone defects.
Background Patients with continuous multi-vertebral lumbar spine tuberculosis (CMLSTB) were subjected to single posterior debridement, interbody fusion, and fixation to explore their clinical outcomes. Methods Sixty-seven CMLSTB patients who underwent single posterior debridement interbody fusion and fixation between January 2008 to December 2017 were studied. The operation time, blood loss, perioperative complication rate, cure rate, Visual Analog Scale (VAS), Oswetry disability index (ODI), Japanese Orthopedic Association (JOA), Erythrocyte Sedimentation Rate (ESR), C-reactive protein (CRP), kyphotic Cobb’s angle and time of interbody fusion were analyzed to understand their therapeutic effects on CMLSTB patients. Results The patients were followed up for 20–48 months, with a mean of 24.3 months. The mean operation time was 215.5 min (range, 120–280 min), whereas 818.0 ml of blood was lost (range, 400–1500 ml) with a perioperative complication rate of 6.0% and a cure rate of 95.5%. During the last phase of follow-up, the mean preoperative VAS score (5.7) and ODI (72.0%) decreased significantly to 1.4 (t = 31.4, P<0.01) and 8.4% (t = 48.4, P<0.01), respectively. Alternatively, the mean preoperative ESR and CRP (74.7 mm /h and 69.3 mg/L, respectively) decreased to average values (tESR = 39.7, PESR<0.001; tCRP = 50.2, PCRP<0.001), while the JOA score (13.9) significantly increased to 23.0 (t = − 11.6, P<0.01). The preoperative kyphotic Cobb’s angle (20.5°) decreased to 4.8° after the operation (t = 14.0, P<0.01); however, the kyphotic correction remained intact at the time of follow-up (t = − 0.476, P = 0.635). Furthermore, the mean of interbody fusion time was identified to be 8.8 months (range, 6–16 months). Conclusion Single posterior debridement, interbody fusion, and fixation may be one of the surgical choices for the treatment of CMLSTB patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.