In this study, we proposed an analytical framework to identify dynamic task-based functional connectivity (FC) features as new biomarkers of emotional sensitivity in nursing students, by using a combination of unsupervised and supervised machine learning techniques. The dynamic FC was measured by functional Near-Infrared Spectroscopy (fNIRS), and computed using a sliding window correlation (SWC) analysis. A k-means clustering technique was applied to derive four recurring connectivity states. The states were characterized by both graph theory and semi-metric analysis. Occurrence probability and state transition were extracted as dynamic FC network features, and a Random Forest (RF) classifier was implemented to detect emotional sensitivity. The proposed method was trialled on 39 nursing students and 19 registered nurses during decisionmaking, where we assumed registered nurses have developed strategies to cope with emotional sensitivity. Emotional stimuli were selected from International Affective Digitized Sound System (IADS) database. Experiment results showed that registered nurses demonstrated single dominant connectivity state of taskrelevance, while nursing students displayed in two states and had higher level of task-irrelevant state connectivity. The results also showed that students were more susceptive to emotional stimuli, and the derived dynamic FC features provided a stronger discriminating power than heart rate variability (accuracy of 81.65% vs 71.03%) as biomarkers of emotional sensitivity. This work forms the first study to demonstrate the stability of fNIRS based dynamic FC states as a biomarker. In conclusion, the results support that the state distribution of dynamic FC could help reveal the differentiating factors between the nursing students and registered nurses during decision making, and it is anticipated that the biomarkers might be used as indicators when developing professional training related to emotional sensitivity.
This study aims to investigate the generalizability of the semi-metric analysis of the functional connectivity (FC) for functional near-infrared spectroscopy (fNIRS) by applying it to detect the dichotomy in differential FC under affective and neutral emotional states in nursing students and registered nurses during decision making. The proposed method employs wavelet transform coherence to construct FC networks and explores semi-metric analysis to extract network redundancy features, which has not been considered in conventional fNIRS-based FC analyses. The trials of the proposed method were performed on 19 nursing students and 19 registered nurses via a decision-making task under different emotional states induced by affective and neutral emotional stimuli. The cognitive activities were recorded using fNIRS, and the emotional stimuli were adopted from the International Affective Digitized Sound System (IADS). The induction of emotional effects was validated by heart rate variability (HRV) analysis. The experimental results by the proposed method showed significant difference (FDR-adjusted p = 0.004) in the nursing students’ cognitive FC network under the two different emotional conditions, and the semi-metric percentage (SMP) of the right prefrontal cortex (PFC) was found to be significantly higher than the left PFC (FDR-adjusted p = 0.036). The benchmark method (a typical weighted graph theory analysis) gave no significant results. In essence, the results support that the semi-metric analysis can be generalized and extended to fNIRS-based functional connectivity estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.