Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.
Chemical de-caging has emerged as an attractive strategy for gain-of-function study of proteins via small-molecule reagents. The previously reported chemical de-caging reactions have been largely centered on liberating the side chain of lysine on a given protein. Herein, we developed an allene-based caging moiety and the corresponding palladium de-caging reagents for chemical rescue of tyrosine (Tyr) activity on intracellular proteins. This bioorthogonal de-caging pair has been successfully applied to unmask enzymatic Tyr sites (e.g., Y671 on Taq polymerase and Y728 on Anthrax lethal factor) as well as the post-translational Tyr modification site (Y416 on Src kinase) in vitro and in living cells. Our strategy provides a general platform for chemical rescue of Tyr-dependent protein activity inside cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.