We conducted a phase I clinical trial of H3B-8800, an oral small molecule that binds Splicing Factor 3B1 (SF3B1), in patients with MDS, CMML, or AML. Among 84 enrolled patients (42 MDS, 4 CMML and 38 AML), 62 were red blood cell (RBC) transfusion dependent at study entry. Dose escalation cohorts examined two once-daily dosing regimens: schedule I (5 days on/9 days off, range of doses studied 1–40 mg, n = 65) and schedule II (21 days on/7 days off, 7–20 mg, n = 19); 27 patients received treatment for ≥180 days. The most common treatment-related, treatment-emergent adverse events included diarrhea, nausea, fatigue, and vomiting. No complete or partial responses meeting IWG criteria were observed; however, RBC transfusion free intervals >56 days were observed in nine patients who were transfusion dependent at study entry (15%). Of 15 MDS patients with missense SF3B1 mutations, five experienced RBC transfusion independence (TI). Elevated pre-treatment expression of aberrant transcripts of Transmembrane Protein 14C (TMEM14C), an SF3B1 splicing target encoding a mitochondrial porphyrin transporter, was observed in MDS patients experiencing RBC TI. In summary, H3B-8800 treatment was associated with mostly low-grade TAEs and induced RBC TI in a biomarker-defined subset of MDS.
Programmed cell death-1 (PD-1) plays an important inhibitory role in anti-tumor responses, so it is considered as a powerful candidate gene for individual’s genetic susceptibility to cancer. Recently, some epidemiological studies have evaluated the association between PD-1 polymorphisms and cancer risk. However, the results of the studies are conflicting. Therefore, a meta-analysis was performed. We identified all studies reporting the relationship between PD-1 polymorphisms and cancers by electronically searches. According to the inclusion criteria and the quality assessment of Newcastle-Ottawa Scale (NOS), only high quality studies were included. A total of twelve relevant studies involving 5,206 cases and 5,174 controls were recruited. For PD-1.5 (rs2227981) polymorphism, significantly decreased cancer risks were obtained among overall population, Asians subgroup and population-based subgroup both in TT vs. CC and TT vs. CT+CC genetic models. In addition, a similar result was also found in T vs. C allele for overall population. However, there were no significant associations between either PD-1.9 (rs2227982) or PD-1 rs7421861 polymorphisms and cancer risks in all genetic models and alleles. For PD-1.3 (rs11568821) polymorphism, we found different cancer susceptibilities between GA vs. GG and AA vs. AG+GG genetic models, and no associations between AA vs. GG, AA+AG vs. GG genetic models or A vs. G allele and cancer risks. In general, our results firstly indicated that PD-1.5 (rs2227981) polymorphism is associated a strongly decreased risk of cancers. Additional epidemiological studies are needed to confirm our findings.
Background: Metastasis and recurrence, wherein circulating tumour cells (CTCs) play an important role, are the leading causes of death in colorectal cancer (CRC). Metastasis-initiating CTCs manage to maintain intravascular survival under anoikis, immune attack, and importantly shear stress; however, the underlying mechanisms remain poorly understood. Methods: In view of the scarcity of CTCs in the bloodstream, suspended colorectal cancer cells were flowed into the cyclic laminar shear stress (LSS) according to previous studies. Then, we detected these suspended cells with a CK8+/CD45−/DAPI+ phenotype and named them mimic circulating tumour cells (m-CTCs) for subsequent CTCs related researches. Quantitative polymerase chain reaction, western blotting, and immunofluorescence were utilised to analyse gene expression change of m-CTCs sensitive to LSS stimulation. Additionally, we examined atonal bHLH transcription factor 8 (ATOH8) expressions in CTCs among 156 CRC patients and mice by fluorescence in situ hybridisation and flow cytometry. The pro-metabolic and pro-survival functions of ATOH8 were determined by glycolysis assay, live/dead cell vitality assay, anoikis assay, and immunohistochemistry. Further, the concrete up-anddown mechanisms of m-CTC survival promotion by ATOH8 were explored. Results: The m-CTCs actively responded to LSS by triggering the expression of ATOH8, a fluid mechanosensor, with executive roles in intravascular survival and metabolism plasticity. Specifically, ATOH8 was upregulated via activation of VEGFR2/AKT signalling pathway mediated by LSS induced VEGF release. ATOH8 then transcriptionally activated HK2-mediated glycolysis, thus promoting the intravascular survival of colorectal cancer cells in the circulation. Conclusions:This study elucidates a novel mechanism that an LSS triggered VEGF-VEGFR2-AKT-ATOH8 signal axis mediates m-CTCs survival, thus providing a potential target for the prevention and treatment of hematogenous metastasis in CRC.
miRNAs play a key role in the carcinogenesis of many cancers, including bladder cancer. In the current study, the role of miR-5195-3p, a quite recently discovered and poorly studied miRNA, in the proliferation and invasion of human bladder cancer cells was investigated. Our data displayed that, compared with healthy volunteers (control) and SU-HUC-1 normal human bladder epithelial cells, miR-5195-3p was sharply downregulated in bladder cancer patients and five human bladder cancer cell lines. The oligo miR-5195-3p mimic or miR-5195-3p antagomir was subsequently transfected into both T24 and BIU-87 bladder cancer cell lines. The miR-5195-3p mimic robustly increased the miR-5195-3p expression level and distinctly reduced the proliferation and invasion of T24 and BIU-87 cells. In contrast, the miR-5195-3p antagomir had an opposite effect on miR-5195-3p expression, cell proliferation, and invasion. Our data from bioinformatic and luciferase reporter gene assays identified that miR-5195-3p targeted the mRNA 3'-UTR of Krüppel-like factor 5 (KLF5), which is a proven proto-oncogene in bladder cancer. miR-5195-3p sharply reduced KLF5 expression and suppressed the expression or activation of its several downstream genes that are kinases improving cell survival or promoting cell cycle regulators, including ERK1/2, VEGFA, and cyclin D1. In conclusion, miR-5195-3p suppressed proliferation and invasion of human bladder cancer cells via suppression of KLF5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.