Contextuality is considered as an intrinsic signature of non-classicality, and a crucial resource for achieving unique advantages of quantum information processing. However, recently there have been debates on whether classical fields may also demonstrate contextuality. Here we experimentally configure a contextuality test for optical fields, adopting various definitions of measurement events, and analyse how the definitions affect the emergence of non-classical correlations. The heralded single photon state, a typical non-classical light field, manifests contextuality in our setup, while contextuality for classical coherent fields strongly depends on the specific definition of measurement events which is equivalent to filtering the non-classical component of the input state. Our results highlight the importance of definition of measurement events to demonstrate contextuality, and link the contextual correlations to non-classicality defined by quasi-probabilities in phase space. arXiv:1810.07966v2 [quant-ph]
Hmong–Mien (HM) -speaking populations, widely distributed in South China, the north of Thailand, Laos, and Vietnam, have experienced different settlement environments, dietary habits, and pathogenic exposure. However, their specific biological adaptation remained largely uncharacterized, which is important in the population evolutionary genetics and Trans-Omics for regional Precision Medicine. Besides, the origin and genetic diversity of HM people and their phylogenetic relationship with surrounding modern and ancient populations are also unknown. Here, we reported genome-wide SNPs in 52 representative Miao people and combined them with 144 HM people from 13 geographically representative populations to characterize the full genetic admixture and adaptive landscape of HM speakers. We found that obvious genetic substructures existed in geographically different HM populations; one localized in the HM clines, and others possessed affinity with Han Chinese. We also identified one new ancestral lineage specifically existed in HM people, which spatially distributed from Sichuan and Guizhou in the north to Thailand in the south. The sharing patterns of the newly identified homogenous ancestry component combined the estimated admixture times via the decay of linkage disequilibrium and haplotype sharing in GLOBETROTTER suggested that the modern HM-speaking populations originated from Southwest China and migrated southward in the historic period, which is consistent with the reconstructed phenomena of linguistic and archeological documents. Additionally, we identified specific adaptive signatures associated with several important human nervous system biological functions. Our pilot work emphasized the importance of anthropologically informed sampling and deeply genetic structure reconstruction via whole-genome sequencing in the next step in the deep Chinese Population Genomic Diversity Project (CPGDP), especially in the regions with rich ethnolinguistic diversity.
The accurate and reliable description of measurement devices is a central problem in both observing uniquely non-classical behaviors and realizing quantum technologies from powerful computing to precision metrology. To date quantum tomography is the prevalent tool to characterize quantum detectors. However, such a characterization relies on accurately characterized probe states, rendering reliability of the characterization lost in circular argument. Here we report a self-characterization method of quantum measurements based on reconstructing the response range of the measurement outcomes, eliminating the reliance on known states. We characterize two representative measurements implemented with photonic setups and obtain fidelities above 99.99% with the conventional tomographic reconstructions. This initiates range-based techniques in characterizing quantum systems and foreshadows novel device-independent protocols of quantum information applications. arXiv:1907.07536v1 [quant-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.