Immune dysregulation plays a vital role in colorectal cancer initiation and progression. Long noncoding RNAs (lncRNA) exhibit multiple functions including regulation of gene expression. Here, we identified an immune-related lncRNA, MIR17HG, whose expression was gradually upregulated in adjacent, adenoma, and colorectal cancer tissue. MIR17HG promoted tumorigenesis and metastasis in colorectal cancer cells both in vitro and in vivo. Mechanistically, MIR17HG increased the expression of NF-kB/RELA by competitively sponging the microRNA miR-375. In addition, RELA transcriptionally activated MIR17HG in a positive feedback loop by directly binding to its promoter region. Moreover, miR-17-5p, one of the transcribed miRNAs from MIR17HG, reduced the expression of the tumor suppressor B-cell linker (BLNK), resulting in increased migration and invasion of colorectal cancer cells. MIR17HG also upregulated PD-L1, indicating its potential role in immunotherapy. Overall, these findings demonstrate that MIR17HG plays an oncogenic role in colorectal cancer and may serve as a promising therapeutic target. Significance: These findings provide mechanistic insight into the role of the lncRNA MIR17HG and its miRNA members in regulating colorectal cancer carcinogenesis and progression.
Balanced chromosomal rearrangement (or balanced chromosome abnormality, BCA) is a common chromosomal structural variation. Next-generation sequencing has been reported to detect BCA-associated breakpoints with the aid of karyotyping. However, the complications associated with this approach and the requirement for cytogenetics information has limited its application. Here, we provide a whole-genome low-coverage sequencing approach to detect BCA events independent of knowing the affected regions and with low false positives. First, six samples containing BCAs were used to establish a detection protocol and assess the efficacy of different library construction approaches. By clustering anomalous read pairs and filtering out the false-positive results with a control cohort and the concomitant mapping information, we could directly detect BCA events for each sample. Through optimizing the read depth, BCAs in all samples could be blindly detected with only 120 million read pairs per sample for data from a small-insert library and 30 million per sample for data from nonsize-selected mate-pair library. This approach was further validated using another 13 samples that contained BCAs. Our approach advances the application of high-throughput whole-genome low-coverage analysis for robust BCA detection-especially for clinical samples-without the need for karyotyping.
In this review, our aim was to examine the influence of geographic variations on asthma prevalence and morbidity among adults, which is important for improving our understanding, identifying the burden, and for developing and implementing interventions aimed at reducing asthma morbidity. Asthma is a complex inflammatory disease of multifactorial origin, and is influenced by both environmental and genetic factors. The disparities in asthma prevalence and morbidity among the world's geographic locations are more likely to be associated with environmental exposures than genetic differences. In writing this article, we found that the indoor factors most consistently associated with asthma and asthma-related symptoms in adults included fuel combustion, mold growth, and environmental tobacco smoke in both urban and rural areas. Asthma and asthma-related symptoms occurred more frequently in urban than in rural areas, and that difference correlated with environmental risk exposures, SES, and healthcare access. Environmental risk factors to which urban adults were more frequently exposed than rural adults were dust mites,high levels of vehicle emissions, and a westernized lifestyle.Exposure to indoor biological contaminants in the urban environment is common.The main risk factors for developing asthma in urban areas are atopy and allergy to house dust mites, followed by allergens from animal dander. House dust mite exposure may potentially explain differences in diagnosis of asthma prevalence and morbidity among adults in urban vs. rural areas. In addition, the prevalence of asthma morbidity increases with urbanization. High levels of vehicle emissions,Western lifestyles and degree of urbanization itself, may affect outdoor and thereby indoor air quality. In urban areas, biomass fuels have been widely replaced by cleaner energy sources at home, such as gas and electricity, but in most developing countries, coal is still a major source of fuel for cooking and heating, particularly in winter. Moreover, exposure to ETS is common at home or at work in urban areas.There is evidence that asthma prevalence and morbidity is less common in rural than in urban areas. The possible reasons are that rural residents are exposed early in life to stables and to farm milk production, and such exposures are protective against developing asthma morbidity. Even so, asthma morbidity is disproportionately high among poor inner-city residents and in rural populations. A higher proportion of adult residents of nonmetropolitan areas were characterized as follows:aged 55 years or older, no previous college admission, low household income, no health insurance coverage, and could not see a doctor due to healthcare service availability, etc. In rural areas, biomass fuels meet more than 70% of the rural energy needs. Progress in adopting modern energy sources in rural areas has been slow. The most direct health impact comes from household energy use among the poor, who depend almost entirely on burning biomass fuels in simple cooking devices that are ...
Supplementary Material for this article is available online at http://www.thieme-connect.de/products AbStr AC t Sodium glucose cotransporter 2 (SGLT2) inhibitors are a new kind of hypoglycemic drugs that improve glucose homeostasis by inhibiting renal glucose reabsorption. Recent studies have shown that SGLT2 inhibitors can also mediate body metabolism through regulation of adipokines level, but the effects of SGLT2 inhibitors on the concentration of adipokines (leptin and adiponectin) remains controversial. This meta-analysis was set out to evaluate the changes in circulating leptin and adiponectin levels in patients with type 2 diabetes mellitus (T2DM) receiving SGLT2 inhibitors therapy. Ten randomized controlled trials (RCTs), that evaluated the effects of SGLT2 inhibitors on blood leptin and adiponectin levels in patients with type 2 diabetes, were identified by performing a systematic search of Pubmed, Embase, Cochrane, and Web of science databases through July 2018. Data were calculated using a random-effects model and presented as standardized mean difference (SMD) and 95 % confidence interval (CI). Compared with placebo, treatment with SGLT2 inhibitors contributed to a decreased circulating leptin levels (SMD − 0.29, 95 % CI − 0.56, − 0.03) and an increased circulating adiponectin levels (SMD 0.30, 95 % CI 0.22, 0.38). SGLT2 inhibitor treatment was associated with decreased circulating leptin levels and increased circulating adiponectin levels, which might contribute to the beneficial effects of SGLT2 inhibitors on metabolic homeostasis. * Contributed equally to this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.