Colorectal cancer (CRC) is a leading cause of cancer death, yet primary prevention remains the best approach to reducing overall morbidity and mortality. Studies have shown that COX-2-derived PGE 2 promotes CRC progression, and both nonselective COX inhibitors (NSAIDs) and selective COX-2 inhibitors (such as glucocorticoids) reduce the number and size of colonic adenomas. However, increased gastrointestinal side effects of NSAIDs and increased cardiovascular risks of selective COX-2 inhibitors limit their use in chemoprevention of CRC. We found that expression of 11β-hydroxysteroid dehydrogenase type II (11βHSD2), which converts active glucocorticoids to inactive keto-forms, increased in human colonic and Apc +/min mouse intestinal adenomas and correlated with increased COX-2 expression and activity. Furthermore, pharmacologic inhibition or gene silencing of 11βHSD2 inhibited COX-2-mediated PGE 2 production in tumors and prevented adenoma formation, tumor growth, and metastasis in mice. Inhibition of 11βHSD2 did not reduce systemic prostacyclin production or accelerate atherosclerosis in mice, thereby avoiding the major cardiovascular side effects seen with systemic COX-2 inhibitors. Therefore, 11βHSD2 inhibition represents what we believe to be a novel approach for CRC chemoprevention and therapy by increasing tumor glucocorticoid activity, which in turn selectively blocks local COX-2 activity.
Increasing evidence demonstrates that there is marked damage and dysfunction in the white matter in Alzheimer's disease (AD). The present study investigates the nature of white matter damage of patients with Alzheimer's disease with diffusion tensor magnetic resonance imaging (DTI) and analyses the relationship between the white matter damage and the cognition function. DTI, as well as T1 fluid attenuated inversion recovery (FLAIR) and T2-FLAIR, was performed on probable patients of Alzheimer's disease, and sex and age matched healthy volunteers to measure the fractional anisotropy (FA) and mean diffusivity (MD) in the genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, and the white matter of frontal, temporal, parietal, and occipital lobes. FA was lower in the splenium of corpus callosum, as well as in the white matter of the frontal, temporal, and parietal lobes from patients with Alzheimer's disease than in the corresponding region from healthy controls and was strongly positive correlated with MMSE scores, whereas FA appeared no different in the anterior and posterior limbs of internal capsule, occipital lobes white matter, and the genu of corpus callosum between the patients and healthy controls. MD was significantly higher in the splenium of corpus callosum and parietal lobes white matter from patients than in that those from healthy controls and was strongly negative correlated with MMSE scores, whereas MD in the anterior and posterior limbs of internal capsule, as well as in frontal, temporal, occipital lobes white matter and the genu of corpus callosum, was not different between the patients and healthy controls. The most prominent alteration of FA and MD was in the splenium of corpus callosum. Our results suggested that white matter of patients with Alzheimer's disease was selectively impaired and the extent of damage had a strong correlation with the cognitive function, and that selective impairment reflected the cortico-cortical and cortico-subcortical disconnections in the pathomechanism of Alzheimer's disease. The values of FA and MD in white matter, especially in the splenium of corpus callosum in AD patients, might be a more appropriate surrogate marker for monitoring the disease progression.
A new series of phosphodiesterase-9 (PDE9) inhibitors that contain a scaffold of 6-amino-pyrazolopyrimidinone have been discovered by a combination of structure-based design and computational docking. This procedure significantly saved load of chemical synthesis and is an effective method for the discovery of inhibitors. The best compound 28 has an IC50 of 21 nM and 3.3 µM respectively for PDE9 and PDE5, and about three orders of magnitude of selectivity against other PDE families. The crystal structure of the PDE9 catalytic domain in complex with 28 has been determined and shows a hydrogen bond between 28 and Tyr424. This hydrogen bond may account for the 860-fold selectivity of 28 against PDE1B, in comparison with about 30-fold selectivity of BAY73-6691. Thus, our studies suggest that Tyr424, a unique residue of PDE8 and PDE9, is a potential target for improvement of selectivity of PDE9 inhibitors.
Abstract. The target protein for Xklp2 (TPX2), a microtubuleassociated protein, can be used to evaluate more precisely the proliferative behavior of tumor cells. The abnormal expression of TPX2 in various types of malignant tumors has been reported, but less is known for cervical cancer. We studied the relationship between TPX2 expression and the biological behavior of cervical cancer. Immunohistochemistry and RT-PCR were used to detect the expression of TPX2 in cervical cancer tissues. The inhibitory effect of TPX2-siRNA on the growth of HeLa human cervical carcinoma cells was studied in vitro. TPX2 expression was found to be significantly higher in cervical carcinoma compared to normal cervical tissues and CIN. The expression of TPX2 in cervical cancer was correlated with histological grading, FIGO staging and lymph node metastasis. TPX2 RNAi in HeLa cervical cancer cells caused S-phase cell cycle arrest, induced apoptosis and inhibited cell proliferation and invasion. In conclusion, TPX2 shows potential to be used as a new marker for cervical cancer diagnosis and therapy.
We have applied intein-mediated peptide ligation (IPL) to the use of peptide substrates for kinase assays and subsequent Western blot analysis. IPL allows for the efficient ligation of a synthetic peptide with an N-terminal cysteine residue to an intein-generated carrier protein containing a cysteine reactive C-terminal thioester through a native peptide bond. A distinct advantage of this procedure is that each carrier protein molecule ligates only one peptide, ensuring that the ligation product forms a sharp band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrate the effectiveness of this approach by mutational analysis of peptide substrates derived from human cyclin-dependent kinase, Cdc2, which contains a phosphorylation site of human c-Src protein tyrosine kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.