We show that the enhanced directivity phenomenon for light passing through a subwavelength aperture in a silver film with corrugations on the exit face, is due to a leaky wave that decays exponentially from the aperture. We show quantitatively that the field along the interface of the silver film is dominated by the leaky wave, and that the radiation of the leaky wave, supported by the periodic structure, yields the directive beam. The leaky wave propagation and attenuation constants parameterize the physical radiation mechanism, and provide important design information for optimizing the structure. Maximum directivity occurs when the phase and attenuation constants are approximately equal.
Abstract-In this paper, a non-spurious vector spectral element method is proposed to solve Maxwell's equations using E and H as variables. The mixed-order curl-conforming basis functions are used for both variables to facilitate applying boundary and interface conditions; and the interpolation degree of basis functions for E is set different from that for H to suppress the spurious modes. The proposed method can be utilized in both time domain and frequency domain, and it is very suitable for the future implementation of discontinuous Galerkin spectral element method. Numerical results demonstrate the property of spurious-free and the spectral accuracy of this method. The method has also been implemented for the more general finite element method in time and frequency domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.