Terahertz technology has shown broad prospects for measuring corneal water content, which is an important parameter of ocular health. Based on terahertz time-domain spectroscopy, a new indicator named characteristic ratio (CR) of the sum of low (0.2-0.7 THz) and high (0.7-1.0 THz) frequency spectral intensities, for characterizing corneal hydration is introduced in this work. CR is calculated from the real-time reflection spectra after error elimination of ex vivo human corneal stroma samples which is collected during dehydration under natural conditions (temperature: 22.4 ± 0.3°C; humidity: 20.0 ± 3%). The corresponding relationships between CR and corneal water content are reported. Comparing the linear fitting results with the published similar study, the coefficients of variation of the fitting slope and intercept are 39.4% and 27.6% lower, respectively. This indicates that this approach has the potential to achieve corneal water content in-vivo detection in the future.
The d1-d2-d3-d4-d5 gradient-type spoof surface plasmons (SSP) grating was designed and found to exert an obvious effect on electric field localization. Two gradient-shaped planar ports were added to the bottom of this grating to form a gradient-type slotted SSP grating and achieve tight focusing and local electric field enhancement for a terahertz wave. The size of the focal spot was optimized to 0.01λ. The single-gradient-type slotted SSP grating was considered as a unit and arranged in one and two dimensions to generate a longitudinal focal line and square focal spots array. This did not only improve the resolution of terahertz imaging, but also simultaneously scan multiple focal spots to increase the speed of terahertz imaging. This work makes the manipulation of terahertz wave more flexible and efficient which has great potential in terahertz high-resolution near-field scanning imaging.
In order to improve the resolution of terahertz near-field microscopic imaging technology, an ultra-thin thickness-graded silver-plated strip probe with the same duty cycle is designed to realize the excitation of spoof surface plasmons. By comparing with two other probes with different structures, it can be found that the thickness-graded silver-plated strip probe can produce a strong electric field enhancement effect. Thereafter, the influence of the polarization direction of the incident electric field and the number of periodic metal stripes on the electric field which are generated at the tip of the probe is investigated. It is found that this case is highly consistent with the electric field distribution in Richards-Wolf vector diffraction theory when the incident light is linearly polarized. The electric field intensity generated at the tip of the thickness-graded silver-plated strip probe can be flexibly and effectively manipulated by changing the polarization direction of the incident electric field. When the number of thickness-graded silver-plated strips is 12, the minimum size of the focal spot is 20 μm, which is λ/150. When the number of thickness-graded silver-plated strips is 4, the electric field intensity enhancement factor at the focal spot is 849. The electric field intensity enhancement factor at the focal spot increases continuously as the number of periodic metal stripes increases, and the size of focal spot decreases continuously as the number of periodic metal stripes decreases. This result shows that the tight focusing and electric field enhancement of terahertz waves can be achieved by using an ultra-thin thickness-graded silver-plated strip probe. The research results in this paper have important guiding significance for manipulating the electric field in the terahertz band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.